ELLIPTIC SOLUTIONS OF THE TODA LATTICE HIERARCHY AND THE ELLIPTIC RUIJS']JSENAARS-SCHNEIDER MODEL

被引:3
作者
Prokofev, V. V. [1 ,2 ]
Zabrodin, A., V [2 ,3 ,4 ]
机构
[1] Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Moscow Region, Russia
[2] Skolkovo Inst Sci & Technol, Moscow, Russia
[3] Natl Res Univ Higher Sch Econ, Moscow, Russia
[4] Natl Res Ctr Kurchatov Inst, Alikhanov Inst Theoret & Expt Phys, Moscow, Russia
关键词
Toda lattice hierarchy; Rui[!text type='js']js[!/text]enaars-Schneider model; elliptic solutions; INTEGRABLE SYSTEMS; EQUATION;
D O I
10.1134/S0040577921080080
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider solutions of the 2D Toda lattice hierarchy that are elliptic functions of the "zeroth" time t(0) = x. It is known that their poles as functions of t1 move as particles of the elliptic RuijsenaarsSchneider model. The goal of this paper is to extend this correspondence to the level of hierarchies. We show that the Hamiltonians that govern the dynamics of poles with respect to the mth hierarchical times t(m) and (t) over bar (m) of the 2D Toda lattice hierarchy are obtained from the expansion of the spectral curve for the Lax matrix of the Ruijsenaars-Schneider model at the marked points.
引用
收藏
页码:1093 / 1115
页数:23
相关论文
共 23 条
[1]   RATIONAL AND ELLIPTIC SOLUTIONS OF KORTEWEG DE-VRIES EQUATION AND A RELATED MANY-BODY PROBLEM [J].
AIRAULT, H ;
MCKEAN, HP ;
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :95-148
[2]  
[Anonymous], 1978, Funct. Anal. Appl
[3]   EXACTLY SOLVABLE ONE-DIMENSIONAL MANY-BODY PROBLEMS [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1975, 13 (11) :411-416
[5]   POLE EXPANSIONS OF NONLINEAR PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHOODNOVSKY, DV ;
CHOODNOVSKY, GV .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1977, 40 (02) :339-353
[6]  
Date E., 1983, Non-Linear Integrable Systems - Classical Theory and Quantum Theory. Proceedings of RIMS Symposium, P39
[7]   KP Trigonometric Solitons and an Adelic Flag Manifold [J].
Haine, Luc .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
[8]   Rational Ruijs']jsenaars-Schneider hierarchy and bispectral difference operators [J].
Iliev, Plamen .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 229 (02) :184-190
[9]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[10]   Spin generalization of the Ruijs']jsenaars-Schneider model, the non-Abelian 2D Toda chain, and representations of the Sklyanin algebra [J].
Krichever, I ;
Zabrodin, A .
RUSSIAN MATHEMATICAL SURVEYS, 1995, 50 (06) :1101-1150