Analysis of in situ water transport in Nafion® by confocal micro-Raman spectroscopy

被引:39
作者
Tabuchi, Yuichiro [1 ]
Ito, Rei [1 ]
Tsushima, Shohji [1 ]
Hirai, Shuichiro [1 ]
机构
[1] Tokyo Inst Technol, Res Ctr Carbon Recycling & Energy, Meguro Ku, Tokyo 1528552, Japan
关键词
PEMFC; Water management; Nafion (R); Raman spectroscopy; Water permeation; POLYMER ELECTROLYTE MEMBRANE; IONOMER MEMBRANES; CELL; DIFFUSION; HYDRATION; PROFILES; METHANOL; SORPTION; MODEL;
D O I
10.1016/j.jpowsour.2010.07.078
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A proton exchange membrane fuel cell (PEMFC) is a promising alternative source of clean power for automotive applications, but its acceptance in such applications depends on reducing its costs and increasing its power density to achieve greater compactness. To meet these requirements, further improvements in cell performance are required. In particular, when the fuel cell is operating at high current density, the transport of water through the membrane has considerable impacts on the performance because of the large concentration gradient of water between the cathode and anode. Through-plane water permeation across the membrane is therefore a fundamental process in operational PEMFCs. Recently, resistance to water transport at the membrane-gas interface has been reported, and this is affected by the temperature and relative humidity. We investigated the distribution of water inside a proton exchange membrane during a water permeation test by using confocal micro-Raman spectroscopy with a fine spatial resolution (2-3 mu m). In the presence of a water flux, the local water content is not necessarily in equilibrium with the water activity in the gas phase. Interfacial water-transport resistance due to the presence of a non-equilibrium membrane structure at the interface cannot be neglected. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:652 / 658
页数:7
相关论文
共 20 条
[1]   AN ANALYSIS OF THE WATER TRANSPORT PROPERTIES OF POLYMER ELECTROLYTE MEMBRANE [J].
Aotani, K. ;
Miyazaki, S. ;
Kubo, N. ;
Katsuta, M. .
PROTON EXCHANGE MEMBRANE FUEL CELLS 8, PTS 1 AND 2, 2008, 16 (02) :341-+
[2]   Transient observation of 2H labeled species in an operating PEFC using neutron radiography [J].
Boillat, P. ;
Scherer, G. G. ;
Wokaun, A. ;
Frei, G. ;
Lehmann, E. H. .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (09) :1311-1314
[3]   In situ confocal-Raman measurement of water and methanol concentration profiles in Nafion® membrane under cross-transport conditions [J].
Deabate, Stefano ;
Fatnassi, Rafaa ;
Sistat, Philippe ;
Huguet, Patrice .
JOURNAL OF POWER SOURCES, 2008, 176 (01) :39-45
[4]   Small-angle scattering study of water-swollen perfluorinated ionomer membranes [J].
Gebel, G ;
Lambard, J .
MACROMOLECULES, 1997, 30 (25) :7914-7920
[5]   Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution [J].
Gebel, G .
POLYMER, 2000, 41 (15) :5829-5838
[6]   SWELLING STUDY OF PERFLUOROSULPHONATED IONOMER MEMBRANES [J].
GEBEL, G ;
ALDEBERT, P ;
PINERI, M .
POLYMER, 1993, 34 (02) :333-339
[7]   Nanostructure of Nafion® membranes at different states of hydration -: An IR and Raman study [J].
Gruger, A ;
Régis, A ;
Schmatko, T ;
Colomban, P .
VIBRATIONAL SPECTROSCOPY, 2001, 26 (02) :215-225
[8]   Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology [J].
Kreuer, KD ;
Paddison, SJ ;
Spohr, E ;
Schuster, M .
CHEMICAL REVIEWS, 2004, 104 (10) :4637-4678
[9]   PEM fuel cell membrane hydration measurement by neutron imaging [J].
Ludlow, D. J. ;
Calebrese, C. M. ;
Yu, S. H. ;
Dannehy, C. S. ;
Jacobson, D. L. ;
Hussey, D. S. ;
Arif, M. ;
Jensen, M. K. ;
Eisman, G. A. .
JOURNAL OF POWER SOURCES, 2006, 162 (01) :271-278
[10]   Water sorption, desorption and transport in Nafion membranes [J].
Majsztrik, Paul W. ;
Satterfield, M. Barclay ;
Bocarsly, Andrew B. ;
Benziger, Jay B. .
JOURNAL OF MEMBRANE SCIENCE, 2007, 301 (1-2) :93-106