Deep learning the hyperbolic volume of a knot

被引:25
作者
Jejjala, Vishnu [1 ,2 ,3 ]
Kar, Arjun [3 ]
Parrikar, Onkar [3 ,4 ]
机构
[1] Univ Witwatersrand, Sch Phys, NITheP, Mandelstam Inst Theoret Phys, ZA-2050 Johannesburg, South Africa
[2] Univ Witwatersrand, CoE MaSS, ZA-2050 Johannesburg, South Africa
[3] Univ Penn, David Rittenhouse Lab, 209 S 33rd St, Philadelphia, PA 19104 USA
[4] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
基金
新加坡国家研究基金会;
关键词
Machine learning; Neural network; Topological field theory; Knot theory;
D O I
10.1016/j.physletb.2019.135033
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An important conjecture in knot theory relates the large-N, double scaling limit of the colored Jones polynomial J(K,N)(q) of a knot K to the hyperbolic volume of the knot complement, Vol(K). A less studied question is whether Vol(K) can be recovered directly from the original Jones polynomial (N = 2). In this report we use a deep neural network to approximate Vol(K) from the Jones polynomial. Our network is robust and correctly predicts the volume with 97.6% accuracy when training on 10% of the data. This points to the existence of a more direct connection between the hyperbolic volume and the Jones polynomial. (C) 2019 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:7
相关论文
共 33 条
[1]  
[Anonymous], 2018, MATH 11 3 0 0
[2]  
Ashley C., 1994, ASHLEY BOOK KNOTS
[3]   Entanglement entropy and the colored Jones polynomial [J].
Balasubramanian, Vijay ;
DeCross, Matthew ;
Fliss, Jackson ;
Kar, Arjun ;
Leigh, Robert G. ;
Parrikar, Onkar .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05)
[4]   Multi-boundary entanglement in Chern-Simons theory and link invariants [J].
Balasubramanian, Vijay ;
Fliss, Jackson R. ;
Leigh, Robert G. ;
Parrikar, Onkar .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04)
[5]  
Bar-Natan D., 2002, Algebr. Geom. Topol., V2, P337, DOI [10.2140/agt.2002.2.337, DOI 10.2140/AGT.2002.2.337]
[6]   Machine learning CICY threefolds [J].
Bull, Kieran ;
He, Yang-Hui ;
Jejjala, Vishnu ;
Mishra, Challenger .
PHYSICS LETTERS B, 2018, 785 :65-72
[7]   Machine learning in the string landscape [J].
Carifio, Jonathan ;
Halverson, James ;
Krioukov, Dmitri ;
Nelson, Brent D. .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (09)
[8]   PLANE-CURVES ASSOCIATED TO CHARACTER VARIETIES OF 3-MANIFOLDS [J].
COOPER, D ;
CULLER, M ;
GILLET, H ;
LONG, DD ;
SHALEN, PB .
INVENTIONES MATHEMATICAE, 1994, 118 (01) :47-84
[9]  
Culler M., 2018, SNAPPY COMPUTER PROG
[10]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274