On 2-approximation to the vertex-connectivity in graphs

被引:1
作者
Naganiochi, H [1 ]
机构
[1] Kyoto Univ, Dept Appl Math & Phys, Kyoto 6068501, Japan
关键词
graph algorithm; approximation algorithm; vertex-connectivity; MA orderings; minimum degree;
D O I
10.1093/ietisy/E88-D.1.12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a graph G, we give a fast algorithm for approximating the vertex connectivity kappa of G. Our algorithm delivers a minimum vertex cut of G if kappa less than or equal to [delta/2], and returns a message "kappa > [delta/2]" otherwise, where delta denotes the minimum degree of G. The algorithm runs in O(n(2)(1 + min{kappa(2), kappa rootn}/delta)) time and O(n + m) space, where n and m denote the numbers of vertices and edges in G, respectively.
引用
收藏
页码:12 / 16
页数:5
相关论文
共 8 条
[1]  
Even S., 1975, SIAM Journal on Computing, V4, P507, DOI 10.1137/0204043
[2]  
Even S., 1975, SIAM Journal on Computing, V4, P393, DOI 10.1137/0204034
[3]   ON SPARSE SUBGRAPHS PRESERVING CONNECTIVITY PROPERTIES [J].
FRANK, A ;
IBARAKI, T ;
NAGAMOCHI, H .
JOURNAL OF GRAPH THEORY, 1993, 17 (03) :275-281
[4]   Using expander graphs to find vertex connectivity [J].
Gabow, HN .
41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, :410-420
[5]  
HARRAY F, 1969, GRAPH THEORY
[6]   A static 2-approximation algorithm for vertex connectivity and incremental approximation algorithms for edge and vertex connectivity [J].
Henzinger, MR .
JOURNAL OF ALGORITHMS, 1997, 24 (01) :194-220
[7]  
Karzanov Alexander V, 1973, MATH VOPROSY UPRAVLE
[8]   A LINEAR-TIME ALGORITHM FOR FINDING A SPARSE K-CONNECTED SPANNING SUBGRAPH OF A K-CONNECTED GRAPH [J].
NAGAMOCHI, H ;
IBARAKI, T .
ALGORITHMICA, 1992, 7 (5-6) :583-596