One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: An efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation

被引:137
作者
Alam, Umair [1 ]
Fleisch, M. [2 ]
Kretschmer, Imme [2 ]
Bahnemann, Detlef [2 ,3 ]
Muneer, M. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Chem, Aligarh 202002, Uttar Pradesh, India
[2] Leibniz Univ Hannover, Inst Tech Chem, Photocatalysis & Nanotechnol, Callinstr 3, D-30167 Hannover, Germany
[3] St Petersburg State Univ, Photoact Nanocomposite Mat, Ulyanovskaya Str, St Petersburg 198504, Russia
关键词
Bi-TiO2NT/graphene; Photocatalytic activity; Methylene blue; Dinoseb; TIO2 NANOTUBE ARRAYS; HIGH-PERFORMANCE; DOPED TIO2; ACID 2,4-D; GRAPHENE; REMOVAL; BI; NANOCOMPOSITES; MECHANISM; ROUTE;
D O I
10.1016/j.apcatb.2017.06.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present study, we have adopted a simple one-pot alkaline hydrothermal route to synthesize Bi-doped TiO2NT/graphene composites by using different wt% of Bi with an aim to achieve the excellent photocatalytic activity under visible light source. The nature of GO is changed to deoxygenated graphene with simultaneous embedding of Bi into TiO2 nanotube (TNT), during hydrothermal process. XRD and FTIR analysis confirm the successful conversion of GO to deoxygenated graphene. EPR analysis reveals the coexistence of Ti3+ ion with oxygen vacancy, which is created by the Bi doping. The photocatalytic activity of the prepared samples is measured by the degradation of aqueous suspensions of methylene blue (MB) and Dinoseb (phenolic herbicide), under visible-light irradiation. The prepared TiO2NT/graphene composite with 2-wt% bismuth (2-BTNTG) has shown the improved photocatalytic activity as compared to their counterparts. The improved photocatalytic activity is associated to the synergistic effect of graphene and Bi-TNT, which facilitate the interfacial charge transfer and enhances the efficiency of light harvesting in the visible region. Moreover, the underlying mechanism involving photocatalytic degradation of organic pollutants over 2-BTNTG is explored by using trapping experiments, suggesting that the (OH)-O-center dot radicals solely contributed to degradation. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:758 / 769
页数:12
相关论文
共 72 条
[11]   Photocatalytic Degradation of Dyes by ZnIn2S4 Microspheres under Visible Light Irradiation [J].
Chen, Zhixin ;
Li, Danzhen ;
Zhang, Wenjuan ;
Shao, Yu ;
Chen, Tianwen ;
Sun, Meng ;
Fu, Xianzhi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (11) :4433-4440
[12]   Studies on lethal concentrations and toxicity stress of some xenobiotics on aquatic organisms [J].
Farah, MA ;
Ateeq, B ;
Ali, MN ;
Sabir, R ;
Ahmad, W .
CHEMOSPHERE, 2004, 55 (02) :257-265
[13]   Fungal decolorization of dye wastewaters: a review [J].
Fu, YZ ;
Viraraghavan, T .
BIORESOURCE TECHNOLOGY, 2001, 79 (03) :251-262
[14]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[15]  
Fujishima A., 2000, J PHOTOCH PHOTOBIO C, V1, P1, DOI [10.1016/S1389-5567(00)00002-2, DOI 10.1016/S1389-5567(00)00002-2]
[16]  
Howard P.H., 1991, Handbook of Environmental Fate and Exposure Data for Organic Chemicals, V3
[17]   Enhanced Photocatalytic Activity of Chemically Bonded TiO2/Graphene Composites Based on the Effective Interfacial Charge Transfer through the C-Ti Bond [J].
Huang, Qingwu ;
Tian, Shouqin ;
Zeng, Dawen ;
Wang, Xiaoxia ;
Song, Wulin ;
Li, Yingying ;
Xiao, Wei ;
Xie, Changsheng .
ACS CATALYSIS, 2013, 3 (07) :1477-1485
[18]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[19]   Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes [J].
Julkapli, NurhidayatullailiMuhd ;
Bagheri, Samira ;
Abd Hamid, Sharifah Bee .
SCIENTIFIC WORLD JOURNAL, 2014,
[20]   Formation of titanium oxide nanotube [J].
Kasuga, T ;
Hiramatsu, M ;
Hoson, A ;
Sekino, T ;
Niihara, K .
LANGMUIR, 1998, 14 (12) :3160-3163