Discovery of activity composites using topic models: An analysis of unsupervised methods

被引:21
作者
Seiter, Julia [1 ]
Amft, Oliver [2 ]
Rossi, Mirco [1 ]
Troster, Gerhard [1 ]
机构
[1] Swiss Fed Inst Technol, Wearable Comp Lab, Zurich, Switzerland
[2] Univ Passau, ACTLab, Passau, Germany
关键词
Activity routines; Daily routines; Topic modeling; Hierarchical activity recognition; Activity discovery;
D O I
10.1016/j.pmcj.2014.05.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work we investigate unsupervised activity discovery approaches using three topic model (TM) approaches, based on Latent Dirichlet Allocation (LDA), n-gram TM (NTM), and correlated TM (CTM). While LDA structures activity primitives, NTM adds primitive sequence information, and CTM exploits co-occurring topics. We use an activity composite/primitive abstraction and analyze three public datasets with different properties that affect the discovery, including primitive rate, activity composite specificity, primitive sequence similarity, and composite-instance ratio. We compare the activity composite discovery performance among the TM approaches and against a baseline using k-means clustering. We provide guidelines for method and optimal TM parameter selection, depending on data properties and activity primitive noise. Results indicate that TMs can outperform k-means clustering up to 17%, when composite specificity is low. LDA-based TMs showed higher robustness against noise compared to other TMs and k-means. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 50 条
[21]   Semantic topic models for source code analysis [J].
Mahmoud, Anas ;
Bradshaw, Gary .
EMPIRICAL SOFTWARE ENGINEERING, 2017, 22 (04) :1965-2000
[22]   Automated Topic Analysis with Large Language Models [J].
Kirilenko, Andrei ;
Stepchenkova, Svetlana .
INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2024, ENTER 2024, 2024, :29-34
[23]   Modeling topic control to detect influence in conversations using nonparametric topic models [J].
Viet-An Nguyen ;
Jordan Boyd-Graber ;
Philip Resnik ;
Deborah A. Cai ;
Jennifer E. Midberry ;
Yuanxin Wang .
Machine Learning, 2014, 95 :381-421
[24]   Modeling topic control to detect influence in conversations using nonparametric topic models [J].
Viet-An Nguyen ;
Boyd-Graber, Jordan ;
Resnik, Philip ;
Cai, Deborah A. ;
Midberry, Jennifer E. ;
Wang, Yuanxin .
MACHINE LEARNING, 2014, 95 (03) :381-421
[25]   Mining FDA drug labels using an unsupervised learning technique - topic modeling [J].
Halil Bisgin ;
Zhichao Liu ;
Hong Fang ;
Xiaowei Xu ;
Weida Tong .
BMC Bioinformatics, 12
[26]   KeyVector: Unsupervised Keyphrase Extraction Using Weighted Topic via Semantic Relatedness [J].
Toleu, Alymzhan ;
Tolegen, Gulmira ;
Mussabayev, Rustam .
COMPUTACION Y SISTEMAS, 2019, 23 (03) :861-869
[27]   Urban activity pattern classification using topic models from online geo-location data [J].
Hasan, Samiul ;
Ukkusuri, Satish V. .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2014, 44 :363-381
[28]   Comparing Twitter and Traditional Media Using Topic Models [J].
Zhao, Wayne Xin ;
Jiang, Jing ;
Weng, Jianshu ;
He, Jing ;
Lim, Ee-Peng ;
Yan, Hongfei ;
Li, Xiaoming .
ADVANCES IN INFORMATION RETRIEVAL, 2011, 6611 :338-+
[29]   EMPIRICAL ANALYSIS ON OPENAPI TOPIC EXPLORATION AND DISCOVERY TO SUPPORT THE DEVELOPER COMMUNITY [J].
da Rocha Araujo, Leonardo ;
Rodriguez, Guillermo ;
Vidal, Santiago ;
Marcos, Claudia ;
dos Santos, Rodrigo Pereira .
COMPUTING AND INFORMATICS, 2021, 40 (06) :1345-1369
[30]   An unsupervised annotation of Arabic texts using multi-label topic modeling and genetic algorithm [J].
Almuzaini, Huda A. ;
Azmi, Aqil M. .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 203