Using Machine Learning to Forecast Air and Water Quality

被引:0
作者
Silva, Carolina [1 ]
Fernandes, Bruno [1 ]
Oliveira, Pedro [1 ]
Novais, Paulo [1 ]
机构
[1] Univ Minho, ALGORITMI Ctr, Dept Informat, Braga, Portugal
来源
ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2 | 2021年
关键词
Environmental Sustainability; Machine Learning; Tree-based Models; Deep Learning;
D O I
10.5220/0010379312101217
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Environmental sustainability is one of the biggest concerns nowadays. With increasingly latent negative impacts, it is substantiated that future generations may be compromised. The research here presented addresses this topic, focusing on air quality and atmospheric pollution, in particular the Ultraviolet index and Carbon Monoxide air concentration, as well as water issues regarding Wastewater Treatment Plants, in particular the pH of water. A set of Machine Learning regressors and classifiers are conceived, tuned, and evaluated in regard to their ability to forecast several parameters of interest. The experimented models include Decision Trees, Random Forests, Multilayer Perceptrons, and Long Short-Term Memory networks. The obtained results assert the strong ability of LSTMs to forecast air pollutants, with all models presenting similar results when the subject was the pH of water.
引用
收藏
页码:1210 / 1217
页数:8
相关论文
共 18 条
  • [1] The outdoor air pollution and brain health workshop
    Block, Michelle L.
    Elder, Alison
    Auten, Richard L.
    Bilbo, Staci D.
    Chen, Honglei
    Chen, Jiu-Chiuan
    Cory-Slechta, Deborah A.
    Costa, Daniel
    Diaz-Sanchez, David
    Dorman, David C.
    Gold, Diane R.
    Gray, Kimberly
    Jeng, Hueiwang Anna
    Kaufman, Joel D.
    Kleinman, Michael T.
    Kirshner, Annette
    Lawler, Cindy
    Miller, David S.
    Nadadur, Srikanth S.
    Ritz, Beate
    Semmens, Erin O.
    Tonelli, Leonardo H.
    Veronesi, Bellina
    Wright, Robert O.
    Wright, Rosalind J.
    [J]. NEUROTOXICOLOGY, 2012, 33 (05) : 972 - 984
  • [2] Burrows WR, 1997, J APPL METEOROL, V36, P531, DOI 10.1175/1520-0450(1997)036<0531:CRMFPU>2.0.CO
  • [3] 2
  • [4] Castelli M., 2020, COMPLEXITY 2020
  • [5] Cohen AJ, 2017, LANCET, V389, P1907, DOI [10.1016/S0140-6736(17)30505-6, 10.1016/s0140-6736(17)30505-6]
  • [6] Deep learning approach for sustainable WWTP operation: A case study on data-driven influent conditions monitoring
    Dairi, Abdelkader
    Cheng, Tuoyuan
    Harrou, Fouzi
    Sun, Ying
    Leiknes, TorOve
    [J]. SUSTAINABLE CITIES AND SOCIETY, 2019, 50
  • [7] Recurrent Neural Network and random forest for analysis and accurate forecast of atmospheric pollutants: A case study in Hangzhou, China
    Feng, Rui
    Zheng, Hui-jun
    Gao, Han
    Zhang, An-ran
    Huang, Chong
    Zhang, Jun-xi
    Luo, Kun
    Fan, Jian-ren
    [J]. JOURNAL OF CLEANER PRODUCTION, 2019, 231 : 1005 - 1015
  • [8] Gawdzik J, 2016, ROCZ OCHR SR, V18, P695
  • [9] Wastewater treatment plant monitoring via a deep learning approach
    Harrou, Fouzi
    Dairi, Abdelkader
    Sun, Ying
    Senouci, Mohamed
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2018, : 1544 - 1548
  • [10] Machine learning for environmental monitoring
    Hino, M.
    Benami, E.
    Brooks, N.
    [J]. NATURE SUSTAINABILITY, 2018, 1 (10): : 583 - 588