Convergence and comparison theorems for a generalized alternating iterative method

被引:20
作者
Climent, JJ
Perea, C
机构
[1] Univ Alicante, Dept Ciencia Computacio & Intelligencia Artificia, E-03080 Alicante, Spain
[2] Univ Miguel Hernandez, Escuela Politecn Super Orihuela, Dept Estadist & Matemat Aplicada, E-03550 Orihuela, Spain
关键词
nonsingular matrix; iterative method; spectral radius; splitting; alternating method; nonstationary method; comparison conditions;
D O I
10.1016/S0096-3003(02)00339-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using as a principal tool the convergence results of standard iterative process for the solution of linear systems, alternating iterative methods are studied. We extend the convergence theorem for the stationary alternating iterative method of Benzi and Szyld [Numererische Mathematik 76 (1997) 309], for weak nonnegative splittings of the first type of a monotone matrix to weak nonnegative splitting of the second type. On the other hand, we introduce a more general method, the nonstationary alternating iterative method, establishing convergence results for weak nonnegative splittings of a monotone matrix, and for P-regular splittings of a symmetric positive definite matrix. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 21 条
[1]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[2]   Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods [J].
Benzi, M ;
Szyld, DB .
NUMERISCHE MATHEMATIK, 1997, 76 (03) :309-321
[3]   MODELS OF PARALLEL CHAOTIC ITERATION METHODS [J].
BRU, R ;
ELSNER, L ;
NEUMANN, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 103 :175-192
[4]  
CLIMENT J.-J., 1999, ELECTRON J LINEAR AL, V5, P24
[5]  
Climent JJ, 1998, LINEAR ALGEBRA APPL, V276, P77
[6]   ALTERNATING METHODS FOR SETS OF LINEAR EQUATIONS [J].
CONRAD, V ;
WALLACH, Y .
NUMERISCHE MATHEMATIK, 1979, 32 (01) :105-108
[7]   COMPARISONS OF REGULAR SPLITTINGS OF MATRICES [J].
CSORDAS, G ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1984, 44 (01) :23-35
[8]   COMPARISONS OF WEAK REGULAR SPLITTINGS AND MULTISPLITTING METHODS [J].
ELSNER, L .
NUMERISCHE MATHEMATIK, 1989, 56 (2-3) :283-289
[9]   Weighted max norms, splittings, and overlapping additive Schwarz iterations [J].
Frommer, A ;
Szyld, DB .
NUMERISCHE MATHEMATIK, 1999, 83 (02) :259-278
[10]  
LANZKRON PJ, 1991, NUMER MATH, V58, P685