ON INVOLUTIVE CLUSTER AUTOMORPHISMS

被引:3
作者
Ndoune, Ndoune [1 ]
机构
[1] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
关键词
Cluster automorphisms; Local slices; Repetitive quivers; 13F60; 16G20; TRIANGULATED CATEGORIES; ALGEBRAS;
D O I
10.1080/00927872.2013.876235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a special embedding of the translation quiver ZQ in the three-dimensional affine space ?(3) where Q is a finite connected acyclic quiver and ZQ contains a local slice whose quiver is isomorphic to the opposite quiver Q(op) of Q. Via this embedding, we show that there exists an involutive anti-automorphism of the translation quiver ZQ. As an immediate consequence, we characterize explicitly the group of cluster automorphisms of the cluster algebras of seed (X, Q), where Q and Q(op) are mutation equivalent.
引用
收藏
页码:2029 / 2043
页数:15
相关论文
共 20 条
[1]  
[Anonymous], 1990, J. Amer. Math. Soc, DOI DOI 10.2307/1990961
[2]  
[Anonymous], 2006, Techniques of Representation Theory, London Math. Soc. Student Texts
[3]   On a category of cluster algebras [J].
Assem, Ibrahim ;
Dupont, Gregoire ;
Schiffler, Ralf .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (03) :553-582
[4]   Cluster automorphisms [J].
Assem, Ibrahim ;
Schiffler, Ralf ;
Shramchenko, Vasilisa .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 104 :1271-1302
[5]   Cluster-tilted algebras without clusters [J].
Assem, Ibrahim ;
Bruestle, Thomas ;
Schiffler, Ralf .
JOURNAL OF ALGEBRA, 2010, 324 (09) :2475-2502
[6]  
Auslander M., 1997, Representation Theory of Artin Algebras Cambridge Studies in Advanced Mathematics, V36
[7]   COVERING-SPACES IN REPRESENTATION-THEORY [J].
BONGARTZ, K ;
GABRIEL, P .
INVENTIONES MATHEMATICAE, 1982, 65 (03) :331-378
[8]  
Buan AB, 2007, P AM MATH SOC, V135, P3049
[9]   Tilting theory and cluster combinatorics [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose ;
Reineke, Markus ;
Reiten, Idun ;
Todorov, Gordana .
ADVANCES IN MATHEMATICS, 2006, 204 (02) :572-618
[10]   From triangulated categories to cluster algebras [J].
Caldero, Philippe ;
Keller, Bernhard .
INVENTIONES MATHEMATICAE, 2008, 172 (01) :169-211