Kinodynamic Motion Planning With Continuous-Time Q-Learning: An Online, Model-Free, and Safe Navigation Framework

被引:57
|
作者
Kontoudis, George P. [1 ]
Vamvoudakis, Kyriakos G. [2 ]
机构
[1] Virginia Tech, Kevin T Crofton Dept Aerosp & Ocean Engn, Blacksburg, VA 24060 USA
[2] Georgia Tech, Daniel Guggenhe Sch Aerosp Engn, Atlanta, GA 30332 USA
关键词
Planning; Heuristic algorithms; Optimal control; Dynamics; System dynamics; Computational modeling; Navigation; Actor; critic network; asymptotic optimality; online motion planning; Q-learning; LINEAR-SYSTEMS; DESIGN;
D O I
10.1109/TNNLS.2019.2899311
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an online kinodynamic motion planning algorithmic framework using asymptotically optimal rapidly-exploring random tree (RRT) and continuous-time Q-learning, which we term as RRT-Q( star operator ). We formulate a model-free Q-based advantage function and we utilize integral reinforcement learning to develop tuning laws for the online approximation of the optimal cost and the optimal policy of continuous-time linear systems. Moreover, we provide rigorous Lyapunov-based proofs for the stability of the equilibrium point, which results in asymptotic convergence properties. A terminal state evaluation procedure is introduced to facilitate the online implementation. We propose a static obstacle augmentation and a local replanning framework, which are based on topological connectedness, to locally recompute the robot's path and ensure collision-free navigation. We perform simulations and a qualitative comparison to evaluate the efficacy of the proposed methodology.
引用
收藏
页码:3803 / 3817
页数:15
相关论文
共 50 条
  • [1] Online, Model-Free Motion Planning in Dynamic Environments: An Intermittent, Finite Horizon Approach with Continuous-Time Q-Learning
    Kontoudis, George P.
    Xu, Zirui
    Vamvoudakis, Kyriakos G.
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 3873 - 3878
  • [2] Adaptive Q-Learning Based Model-Free H∞ Control of Continuous-Time Nonlinear Systems: Theory and Application
    Zhao, Jun
    Lv, Yongfeng
    Wang, Zhangu
    Zhao, Ziliang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [3] Model-free Q-learning over Finite Horizon for Uncertain Linear Continuous-time Systems
    Xu, Hao
    Jagannathan, S.
    2014 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING (ADPRL), 2014, : 164 - 169
  • [4] Q-learning for continuous-time linear systems: A model-free infinite horizon optimal control approach
    Vamvoudakis, Kyriakos G.
    SYSTEMS & CONTROL LETTERS, 2017, 100 : 14 - 20
  • [5] Robust Inverse Q-Learning for Continuous-Time Linear Systems in Adversarial Environments
    Lian, Bosen
    Xue, Wenqian
    Lewis, Frank L.
    Chai, Tianyou
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13083 - 13095
  • [6] Robust Kinodynamic Motion Planning using Model-Free Game-Theoretic Learning
    Kontoudis, George P.
    Vamvoudakis, Kyriakos G.
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 273 - 278
  • [7] Iterative Q-Learning for Model-Free Optimal Control With Adjustable Convergence Rate
    Wang, Ding
    Wang, Yuan
    Zhao, Mingming
    Qiao, Junfei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (04) : 2224 - 2228
  • [8] Quantized measurements in Q-learning based model-free optimal control
    Tiistola, Sini
    Ritala, Risto
    Vilkko, Matti
    IFAC PAPERSONLINE, 2020, 53 (02): : 1640 - 1645
  • [9] Adaptive Dynamic Programming for Model-Free Global Stabilization of Control Constrained Continuous-Time Systems
    Rizvi, Syed Ali Asad
    Lin, Zongli
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (02) : 1048 - 1060
  • [10] Q-Learning for Continuous-Time Linear Systems: A Data-Driven Implementation of the Kleinman Algorithm
    Possieri, Corrado
    Sassano, Mario
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (10): : 6487 - 6497