Transformation of fuzzy Takagi-Sugeno models into piecewise affine models

被引:0
作者
Herceg, Martin [1 ]
Kvasnica, Michal [1 ]
Fikar, Miroslav [1 ]
机构
[1] Slovak Tech Univ, Inst Informat Engn Automat & Math, Bratislava 81237, Slovakia
来源
ROUGH SETS AND INTELLIGENT SYSTEMS PARADIGMS, PROCEEDINGS | 2007年 / 4585卷
关键词
Takagi-Sugeno models; piecewise affine models; model predictive control;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy modeling of dynamical systems can be viewed as an interpolation of a collection of linear models where the interpolation coefficients depend on set membership functions. The fuzzy interference applies only when the membership functions intersect otherwise only one model is valid. The approach presented in this paper models the intersections with an uncertainty measure reducing the overall fuzzy model to Piecewise Affine (PWA) description, over-approximating the original fuzzy model. Once such an approximation is calculated, existing algorithms can be applied which yield controllers guaranteeing closed-loop stability. Since the PWA model over-approximates a given fuzzy model, if such a controller is calculated, it guarantees stability of the original fuzzy model as well.
引用
收藏
页码:211 / +
页数:2
相关论文
共 19 条
[1]  
Allgower F., 2000, NONLINEAR MODEL PRED
[2]  
[Anonymous], 1988, FUNDAMENTAL PROCESS
[3]   Control of systems integrating logic, dynamics, and constraints [J].
Bemporad, A ;
Morari, M .
AUTOMATICA, 1999, 35 (03) :407-427
[4]  
CLARKE DW, 1987, GEN PREDICTIVE CONTR, V23
[5]  
Cutler C. R., 1980, P JOINT AM CONTR C S
[6]  
ESPINOSA JJ, 1999, P EUR CONTR C KARLSR
[7]   Stabilizing low complexity feedback control of constrained piecewise affine systems [J].
Grieder, P ;
Kvasnica, M ;
Baotic, M ;
Morati, M .
AUTOMATICA, 2005, 41 (10) :1683-1694
[8]   Multiple fuzzy model-based temperature predictive control for HVAC systems [J].
He, M ;
Cai, WJ ;
Li, SY .
INFORMATION SCIENCES, 2005, 169 (1-2) :155-174
[9]  
KHABER F, 2005, INT J COMPUTATIONAL, V2
[10]  
KOSKO B, 1992, IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, P1153, DOI 10.1109/FUZZY.1992.258720