Dynamic performance of key components for hydraulic power take-off of the wave energy converter

被引:9
作者
Chen Qijuan [1 ]
Jiang Wen [1 ]
Yue Xuhui [1 ]
Geng Dazhou [1 ]
Yan Donglin [1 ]
Wang Weiyu [1 ]
机构
[1] Wuhan Univ, Minist Educ, Key Lab Transients Hydraul Machinery, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
tanks (containers); condition monitoring; wave power generation; load shedding; remaining life assessment; valves; noise abatement; flow control; hydraulic systems; pendulums; dynamic performance; hydraulic power; wave energy converter; wave energy utilisation; HPTO; pendulum; high-pressure accumulator; oil tank; flow control valve; operational stability; excessive input power; output power; DESIGN; TECHNOLOGIES; STRATEGIES; SYSTEMS;
D O I
10.1049/iet-rpg.2018.6097
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Since the input power of the real waves varies continuously and periodically, how to stabilise the operation and generation during wave energy utilisation has become an inevitable and significant topic. This study focuses on the wave energy converter of a hydraulic power take-off (HPTO) connected to a pendulum and studies the influences of the key components, i.e. the high-pressure accumulator, oil tank and flow control valve, on the operational stability of HPTO by simulations and experiments. Parameters of the high-pressure accumulator are analysed and optimised. The dynamic performance of the HPTO with or without the oil tank is also investigated. Besides, the functions of the flow control valve in the cases of excessive input power and load shedding are given. Results show that the key components play very important roles in the operational stability of HPTO. Reasonable configurations of the high-pressure accumulator and oil tank are significant to improve the quality of output power and stability. Appropriate actions of the flow control valve are beneficial to protection and stability. Therefore, these key components should be considered preferentially during the design of HPTO.
引用
收藏
页码:2929 / 2938
页数:10
相关论文
共 50 条
  • [21] A novel discrete control for wave energy converters with a hydraulic power take-off system
    Liu, Changhai
    Zhao, Zhixue
    Hu, Min
    Gao, Wenzhi
    Chen, Jian
    Yan, Hao
    Zeng, Yishang
    Zhang, Tao
    Liu, Xuling
    Yang, Qingjun
    Bao, Gang
    Chen, Suxin
    Wei, Daozhu
    OCEAN ENGINEERING, 2022, 249
  • [22] Design tradeoffs of an oil-hydraulic power take-off for wave energy converters
    Gaspar, Jose F.
    Calvario, Miguel
    Kamarlouei, Mojtaba
    Guedes Soares, C.
    RENEWABLE ENERGY, 2018, 129 : 245 - 259
  • [23] Research of Power Take-off System for "Sharp Eagle II" Wave Energy Converter
    Ye Yin
    Wang Kun-lin
    You Ya-ge
    Sheng Song-wei
    CHINA OCEAN ENGINEERING, 2019, 33 (05) : 618 - 627
  • [24] Selection of an oscillating type wave energy converter and a power take-off system for the use of wave energy in Colombia
    Castano-Serna, Juan Pablo
    Chica-Arrieta, Edwin
    UIS INGENIERIAS, 2023, 22 (02): : 141 - 165
  • [25] Control Parameters Optimization of Accumulator in Hydraulic Power Take-Off System for Eccentric Rotating Wave Energy Converter
    Xue, Gang
    Zhang, Zhenquan
    Qin, Jian
    Huang, Shuting
    Liu, Yanjun
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (04)
  • [26] Research of Power Take-off System for “Sharp Eagle Ⅱ” Wave Energy Converter
    YE Yin
    WANG Kun-lin
    YOU Ya-ge
    SHENG Song-wei
    ChinaOceanEngineering, 2019, 33 (05) : 618 - 627
  • [27] Simulation of the Power Take-off System for a Heaving Buoy Wave Energy Converter
    Feifei Cao
    Hongda Shi
    Ming Li
    Xiaochen Dong
    Demin Li
    Journal of Ocean University of China, 2020, 19 : 497 - 504
  • [28] A high-precise model for the hydraulic power take-off of a raft-type wave energy converter
    Liu, Changhai
    Hu, Min
    Gao, Wenzhi
    Chen, Jian
    Zeng, Yishan
    Wei, Daozhu
    Yang, Qingjun
    Bao, Gang
    ENERGY, 2021, 215
  • [29] Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review
    Jusoh, Mohd Afifi
    Ibrahim, Mohd Zamri
    Daud, Muhamad Zalani
    Albani, Aliashim
    Yusop, Zulkifli Mohd
    ENERGIES, 2019, 12 (23)
  • [30] On the power performance of a wave energy converter with a direct mechanical drive power take-off system controlled by latching
    Shadman, Milad
    Guarniz Avalos, Gustavo Omar
    Estefen, Segen F.
    RENEWABLE ENERGY, 2021, 169 : 157 - 177