The role of calcification in carbonate compensation

被引:54
作者
Boudreau, Bernard P. [1 ]
Middelburg, Jack J. [2 ]
Luo, Yiming [3 ]
机构
[1] Dalhousie Univ, Dept Oceanog, Halifax, NS, Canada
[2] Univ Utrecht, Fac Geosci, Dept Earth Sci, Utrecht, Netherlands
[3] Sun Yat Sen Univ, Sch Marine Sci, Zhuhai, Guangdong, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
OCEAN ACIDIFICATION; FORAMINIFERAL CALCIFICATION; PLANKTONIC-FORAMINIFERA; DISSOLUTION KINETICS; SELECTIVE SOLUTION; CALCIUM-CARBONATE; MASS EXTINCTION; WATER; END; AFTERMATH;
D O I
10.1038/s41561-018-0259-5
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The long-term recovery of the oceans from present and past acidification is possible due to neutralization by the dissolution of biogenic CaCO3 in bottom sediments, that is, carbonate compensation. However, such chemical compensation is unable to account for all features of past acidification events, such as the enhanced accumulation of CaCO3 at deeper depths after acidification. This overdeepening of CaCO3 accumulation led to the idea that an increased supply of alkalinity to the oceans, via amplified weathering of continental rocks, must accompany chemical compensation. Here we discuss an alternative: that changes to calcification, a biological process dependent on environmental conditions, can enhance and modify chemical compensation and account for overdeepening. Using a simplified ocean box model with both constant and variable calcification, we show that even modest drops in calcification can lead to appreciable long-term alkalinity build-up in the oceans and, thus, create overdeepening; we term this latter effect biological compensation. The chemical and biological manifestations of compensation differ in terms of controls, timing and effects, which we illustrate with model results. To better predict oceanic evolution during the Anthropocene and improve the interpretation of the palaeoceanographic record, it is necessary to better understand biological compensation.
引用
收藏
页码:894 / +
页数:8
相关论文
共 58 条
  • [1] Andersson AJ, 2003, GEOLOGY, V31, P513, DOI 10.1130/0091-7613(2003)031<0513:SOSCAI>2.0.CO
  • [2] 2
  • [3] A data-driven model of the global calcite lysocline
    Archer, D
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (03) : 511 - 526
  • [4] Extreme warming of tropical waters during the Paleocene-Eocene Thermal Maximum
    Aze, T.
    Pearson, P. N.
    Dickson, A. J.
    Badger, M. P. S.
    Bown, P. R.
    Pancost, R. D.
    Gibbs, S. J.
    Huber, B. T.
    Leng, M. J.
    Coe, A. L.
    Cohen, A. S.
    Foster, G. L.
    [J]. GEOLOGY, 2014, 42 (09) : 739 - 742
  • [5] Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2
    Barker, S
    Elderfield, H
    [J]. SCIENCE, 2002, 297 (5582) : 833 - 836
  • [6] Sensitivity of coccolithophores to carbonate chemistry and ocean acidification
    Beaufort, L.
    Probert, I.
    de Garidel-Thoron, T.
    Bendif, E. M.
    Ruiz-Pino, D.
    Metzl, N.
    Goyet, C.
    Buchet, N.
    Coupel, P.
    Grelaud, M.
    Rost, B.
    Rickaby, R. E. M.
    de Vargas, C.
    [J]. NATURE, 2011, 476 (7358) : 80 - 83
  • [7] PLANKTONIC FORAMINIFERA - SELECTIVE SOLUTION AND LYSOCLINE
    BERGER, WH
    [J]. MARINE GEOLOGY, 1970, 8 (02) : 111 - &
  • [8] PLANKTONIC FORAMINIFERA - SELECTIVE SOLUTION AND PALEOCLIMATIC INTERPRETATION
    BERGER, WH
    [J]. DEEP-SEA RESEARCH, 1968, 15 (01): : 31 - &
  • [9] Berner E. K., 2012, GLOBAL ENV WATER AIR
  • [10] Boudreau B.P., 2001, BENTHIC BOUNDARY LAY