Nano-diamond reinforced ZrB2-SiC composites

被引:66
作者
Fattahi, Mehdi [1 ]
Azizian-Kalandaragh, Yashar [2 ,3 ]
Delbari, Seyed Ali [4 ]
Namini, Abbas Sabahi [3 ,5 ]
Ahmadi, Zohre [4 ]
Asl, Mehdi Shahedi [4 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Univ Mohaghegh Ardabili, Dept Phys, POB 179, Ardebil, Iran
[3] Sabalan Univ Adv Technol, Fac Adv Technol, Dept Engn Sci, Namin, Iran
[4] Univ Mohaghegh Ardabili, Dept Mech Engn, Ardebil, Iran
[5] Univ Mohaghegh Ardabili, Fac Adv Technol, Dept Engn Sci, Namin, Iran
关键词
ZrB2; SiC; Nano-diamond; SPS; HOT-PRESSING PARAMETERS; MECHANICAL-PROPERTIES; HEAT-TRANSFER; FRACTOGRAPHICAL CHARACTERIZATION; THERMAL-STRESS; PLASMA; CERAMICS; DENSIFICATION; TEMPERATURE; ZIRCONIUM;
D O I
10.1016/j.ceramint.2020.01.008
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The effect of adding various amounts of nano-diamond additive (0, 1, 2, and 3 wt%) on the densification behavior and mechanical properties of ZrB2-25 vol% SiC samples were investigated in this research. All samples were spark plasma sintered at 1900 degrees C under 40 MPa external pressure for 7 min. Relative density (RD) values higher than 99.9% were obtained for the samples with 0, 1, and 2 wt% nano-diamond, while adding 3 wt% diamond dropped the RD by similar to 1.2%. The XRD and microstructural evaluations revealed the formation of some in-situ phases, namely ZrC and B4C. The highest Vickers hardness (24.7 GPa) and fracture toughness (5.8 MPa m(1/2)) were achieved for the samples doped with 2 and 3 wt% nano-diamond, respectively. Ultimately, the SEM micrographs indicated the role of different toughening mechanisms on obtaining such a high value of fracture toughness.
引用
收藏
页码:10172 / 10179
页数:8
相关论文
共 50 条
[21]   Effect of nano and micro SiC particles on the microstructure and fracture toughness of ZrB2-SIC nanocomposite produced by SPS method [J].
Darihaki, Farhoud ;
Balak, Zohre ;
Eatemadi, Rozbe .
MATERIALS RESEARCH EXPRESS, 2019, 6 (09)
[22]   Influence of ZrH2 addition on pulsed electric current sintered ZrB2-SiC composites [J].
Ran, Songlin ;
Sun, Huifeng ;
Vanmeensel, Kim ;
Huang, Shuigen ;
Vleugels, Jef .
SCRIPTA MATERIALIA, 2014, 77 :41-44
[23]   Room temperature fatigue of ZrB2-SiC ceramic composites [J].
Lugovy, M. ;
Orlovskaya, N. ;
Neubert, M. ;
Aneziris, C. G. ;
Graule, T. ;
Kuebler, J. .
CERAMICS INTERNATIONAL, 2013, 39 (08) :9187-9194
[24]   ZrB2-SiC Composites Toughened by Interlocking Microstructure and Chopped Carbon Fiber [J].
Zhang Zhao-Fu ;
Sha Jian-Jun ;
Zu Yu-Fei ;
Dai Ji-Xiang .
JOURNAL OF INORGANIC MATERIALS, 2019, 34 (09) :918-924
[25]   Mechanical Characterization of ZrB2-SiC Composites with Varying SiC Particle Sizes [J].
Watts, Jeremy ;
Hilmas, Greg ;
Fahrenholtz, William G. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (12) :4410-4418
[26]   Influence of SiAlON addition on the microstructure development of hot-pressed ZrB2-SiC composites [J].
Thang Phan Nguyen ;
Kakroudi, Mahdi Ghassemi ;
Asl, Mehdi Shahedi ;
Ahmadi, Zohre ;
Namini, Abbas Sabahi ;
Delbari, Seyed Ali ;
Quyet Van Le ;
Shokouhimehr, Mohammadreza .
CERAMICS INTERNATIONAL, 2020, 46 (11) :19209-19216
[27]   Fabrication and properties of ZrB2-SiC and ZrC-SiC composites by spark plasma sintering [J].
Ma, Yan ;
Li, Qinggang ;
Wang, Zhi ;
Shi, Guopu ;
Liu, Luhao ;
Wu, Chao .
JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2014, 122 (1426) :517-519
[28]   Enhanced mechanical properties and ablation resistance of ZrCw/ZrB2-SiC composites [J].
Wei, Yucong ;
Ye, Fang ;
Cheng, Laifei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1022
[29]   Microstructure and densification of ZrB2-SiC composites prepared by spark plasma sintering [J].
Akin, Ipek ;
Hotta, Mikinori ;
Sahin, Filiz Cinar ;
Yucel, Onuralp ;
Goller, Gultekin ;
Goto, Takashi .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2009, 29 (11) :2379-2385
[30]   A new temperature dependent fracture strength model for the ZrB2-SiC composites [J].
Wang, Ruzhuan ;
Li, Weiguo ;
Li, Dingyu ;
Fang, Daining .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (10) :2957-2962