On the filtered symplectic homology of prequantization bundles

被引:10
作者
Ginzburg, Viktor L. [1 ]
Shon, Jeongmin [1 ]
机构
[1] UC Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
关键词
Periodic orbits; Reeb flows; Floer and symplectic homology; RABINOWITZ FLOER HOMOLOGY; HOFERS GEOMETRY; EXACT SEQUENCE; MORSE-THEORY; CONTACT; COHOMOLOGY; CONJECTURE; TOPOLOGY; ORBITS;
D O I
10.1142/S0129167X18500714
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Reeb dynamics on prequantization circle bundles and the filtered (equivariant) symplectic homology of prequantization line bundles, aka negative line bundles, with symplectically aspherical base. We define (equivariant) symplectic capacities, obtain an upper bound on their growth, prove uniform instability of the filtered symplectic homology and touch upon the question of stable displacement. We also introduce a new algebraic structure on the positive (equivariant) symplectic homology capturing the free homotopy class of a closed Reeb orbit - the linking number filtration - and use it to give a new proof of the non-degenerate case of the contact Conley conjecture (i.e. the existence of infinitely many simple closed Reeb orbits), not relying on contact homology.
引用
收藏
页数:35
相关论文
共 57 条
[1]   Floer homology of cotangent bundles and the loop product [J].
Abbondandolo, Alberto ;
Schwarz, Matthias .
GEOMETRY & TOPOLOGY, 2010, 14 (03) :1569-1722
[2]   Vanishing of Rabinowitz Floer homology on negative line bundles [J].
Albers, Peter ;
Kang, Jungsoo .
MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (1-2) :493-517
[3]  
[Anonymous], 2002, GRADUATE STUDIES MAT
[4]   S1-Equivariant Symplectic Homology and Linearized Contact Homology [J].
Bourgeois, Frederic ;
Oancea, Alexandru .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (13) :3849-3937
[5]   THE GYSIN EXACT SEQUENCE FOR S1-EQUIVARIANT SYMPLECTIC HOMOLOGY [J].
Bourgeois, Frederic ;
Oancea, Alexandru .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2013, 5 (04) :361-407
[6]   An exact sequence for contact- and symplectic homology [J].
Bourgeois, Frederic ;
Oancea, Alexandru .
INVENTIONES MATHEMATICAE, 2009, 175 (03) :611-680
[7]   SYMPLECTIC HOMOLOGY, AUTONOMOUS HAMILTONIANS, AND MORSE-BOTT MODULI SPACES [J].
Bourgeois, Frederic ;
Oancea, Alexandru .
DUKE MATHEMATICAL JOURNAL, 2009, 146 (01) :71-174
[8]   Symplectic homology and the Eilenberg-Steenrod axioms [J].
Cieliebak, Kai ;
Oancea, Alexandru .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (04) :1953-2130
[9]  
Cieliebak K, 2010, ANN SCI ECOLE NORM S, V43, P957
[10]   A FLOER HOMOLOGY FOR EXACT CONTACT EMBEDDINGS [J].
Cieliebak, Kai ;
Frauenfelder, Urs Adrian .
PACIFIC JOURNAL OF MATHEMATICS, 2009, 239 (02) :251-316