Improving the Accuracy of Protein-Ligand Binding Mode Prediction Using a Molecular Dynamics-Based Pocket Generation Approach

被引:8
作者
Araki, Mitsugu [1 ,2 ]
Iwata, Hiroaki [1 ,3 ]
Ma, Biao [3 ]
Fujita, Atsuto [3 ]
Terayama, Kei [4 ,6 ]
Sagae, Yukari [1 ]
Ono, Fumie [1 ]
Tsuda, Koji [4 ]
Kamiya, Narutoshi [5 ]
Okuno, Yasushi [1 ,2 ]
机构
[1] Kyoto Univ, Grad Sch Med, Sakyo Ku, 53 Shogoin Kawaharacho, Kyoto 6068507, Japan
[2] RIKEN, Adv Inst Computat Sci, Chuo Ku, 7-1-26 Minatojima Minamimachi, Kobe, Hyogo 6500047, Japan
[3] FBRI, Res & Dev Grp Silico Drug Discovery, Procluster Kobe, Chuo Ku, 6-3-5 Minatojima Minamimachi, Kobe, Hyogo 6500047, Japan
[4] Univ Tokyo, Dept Computat Biol & Med Sci, Grad Sch Frontier Sci, Chiba 2778561, Japan
[5] Univ Hyogo, Grad Sch Simulat Studies, Chuo Ku, 7-1-28 Minatojima Minamimachi, Kobe, Hyogo 6500047, Japan
[6] RIKEN, Ctr Adv Intelligence Project, Chuo Ku, 1-4-1 Nihombashi, Tokyo 1030027, Japan
关键词
protein; in-silico drug discovery; molecular docking; molecular dynamics simulation; the binding free energy; CDK2 INHIBITORS PREDICTION; FREE-ENERGIES; AUTOMATED DOCKING; ENSEMBLE DOCKING; STRUCTURAL BASIS; SIMULATIONS; VALIDATION; INSIGHTS; RECEPTOR; POTENCY;
D O I
10.1002/jcc.25715
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Protein-drug binding mode prediction from the apo-protein structure is challenging because drug binding often induces significant protein conformational changes. Here, the authors report a computational workflow that incorporates a novel pocket generation method. First, the closed protein pocket is expanded by repeatedly filling virtual atoms during molecular dynamics (MD) simulations. Second, after ligand docking toward the prepared pocket structures, binding mode candidates are ranked by MD/Molecular Mechanics Poisson-Boltzmann Surface Area. The authors validated our workflow using CDK2 kinase, which has an especially-closed ATP-binding pocket in the apo-form, and several inhibitors. The crystallographic pose coincided with the top-ranked docking pose for 59% (34/58) of the compounds and was within the top five-ranked ones for 88% (51/58), while those estimated by a conventional prediction protocol were 9% (5/58) and 50% (29/58), respectively. Our study demonstrates that the prediction accuracy is significantly improved by preceding pocket expansion, leading to generation of conformationally-diverse binding mode candidates. (c) 2018 Wiley Periodicals, Inc.
引用
收藏
页码:2679 / 2689
页数:11
相关论文
共 59 条
  • [41] Computational alanine scanning to probe protein-protein interactions: A novel approach to evaluate binding free energies
    Massova, I
    Kollman, PA
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (36) : 8133 - 8143
  • [42] MMPBSA.py: An Efficient Program for End-State Free Energy Calculations
    Miller, Bill R., III
    McGee, T. Dwight, Jr.
    Swails, Jason M.
    Homeyer, Nadine
    Gohlke, Holger
    Roitberg, Adrian E.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) : 3314 - 3321
  • [43] Predicting absolute ligand binding free energies to a simple model site
    Mobley, David L.
    Graves, Alan P.
    Chodera, John D.
    McReynolds, Andrea C.
    Shoichet, Brian K.
    Dill, Ken A.
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2007, 371 (04) : 1118 - 1134
  • [44] A MOLECULAR-DYNAMICS METHOD FOR SIMULATIONS IN THE CANONICAL ENSEMBLE
    NOSE, S
    [J]. MOLECULAR PHYSICS, 1984, 52 (02) : 255 - 268
  • [45] High-Performance Drug Discovery: Computational Screening by Combining Docking and Molecular Dynamics Simulations
    Okimoto, Noriaki
    Futatsugi, Noriyuki
    Fuji, Hideyoshi
    Suenaga, Atsushi
    Morimoto, Gentaro
    Yanai, Ryoko
    Ohno, Yousuke
    Narumi, Tetsu
    Taiji, Makoto
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (10)
  • [46] Modification of the generalized Born model suitable for macromolecules
    Onufriev, A
    Bashford, D
    Case, DA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (15): : 3712 - 3720
  • [47] A temperature predictor for parallel tempering simulations
    Patriksson, Alexandra
    van der Spoel, David
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (15) : 2073 - 2077
  • [48] rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids
    Ruiz-Carmona, Sergio
    Alvarez-Garcia, Daniel
    Foloppe, Nicolas
    Beatriz Garmendia-Doval, A.
    Juhos, Szilveszter
    Schmidtke, Peter
    Barril, Xavier
    Hubbard, Roderick E.
    Morley, S. David
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (04)
  • [49] Prediction of multiple binding modes of the CDK2 inhibitors, anilinopyrazoles, using the automated docking programs GOLD, FlexX, and LigandFit: An evaluation of performance
    Sato, Hideyuki
    Shewchuk, Lisa M.
    Tang, Jun
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2006, 46 (06) : 2552 - 2562
  • [50] GENERAL ATOMIC AND MOLECULAR ELECTRONIC-STRUCTURE SYSTEM
    SCHMIDT, MW
    BALDRIDGE, KK
    BOATZ, JA
    ELBERT, ST
    GORDON, MS
    JENSEN, JH
    KOSEKI, S
    MATSUNAGA, N
    NGUYEN, KA
    SU, SJ
    WINDUS, TL
    DUPUIS, M
    MONTGOMERY, JA
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 1993, 14 (11) : 1347 - 1363