Multi-scale Dynamic Network for Temporal Action Detection

被引:2
作者
Ren, Yifan [1 ,2 ]
Xu, Xing [1 ,2 ]
Shen, Fumin [1 ,2 ]
Wang, Zheng [1 ,2 ]
Yang, Yang [1 ,2 ]
Shen, Heng Tao [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Ctr Future Media, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
来源
PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR '21) | 2021年
基金
中国国家自然科学基金;
关键词
Temporal Action Detection; Dynamic Filters; Multi-scale Features;
D O I
10.1145/3460426.3463613
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, as the fundamental task in video understanding, Temporal Action Detection is attracting extensive attention. Most existing approaches use the same model parameters to process all input videos, which are not adaptive to the input video during the inference stage. In this paper, we propose a novel model termed Multi-scale Dynamic Network (MDN) to tackle this problem. The proposed MDN model incorporates multiple Multi-scale Dynamic Modules (MDMs). Each MDM can generate video-specific and segment-specific convolution kernels based on video content from different scales and adaptively capture rich semantic information for the prediction. Besides, we also design a new Edge Suppression Loss (ESL) function for MDN to pay more attention to hard examples. Extensive experiments conducted on two popular benchmarks ActivityNet-1.3 and THUMOS-14 show that the proposed MDN model achieves the state-of-the-art performance.
引用
收藏
页码:267 / 275
页数:9
相关论文
共 50 条
[41]   Deep learning with multi-scale temporal hybrid structure for robust crop mapping [J].
Tang, Pengfei ;
Chanussot, Jocelyn ;
Guo, Shanchuan ;
Zhang, Wei ;
Qie, Lu ;
Zhang, Peng ;
Fang, Hong ;
Du, Peijun .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 209 :117-132
[42]   Hyperspectral image classification based on multi-scale hybrid convolutional network [J].
Yang, Yun ;
Zhou, Yao ;
Chen, Jia-ning .
CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (03) :368-377
[43]   Multi-scale detail enhancement network for remote sensing road extraction [J].
Geng, Tingting ;
Cao, Yuan ;
Wang, Changqing .
EARTH SCIENCE INFORMATICS, 2025, 18 (03)
[44]   Multi-scale Underwater Image Enhancement Network Based on Attention Mechanism [J].
Fang Ming ;
Liu Xiaohan ;
Fu Feiran .
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (12) :3513-3521
[45]   Hyperspectral Image Classification Based on A Multi-Scale Weighted Kernel Network [J].
Sun Le ;
Xu Bin ;
Lu Zhenyu .
CHINESE JOURNAL OF ELECTRONICS, 2022, 31 (05) :832-843
[46]   Lightweight multi-scale generative adversarial network with attention for image denoising [J].
Hu, Xuegang ;
Zhao, Wei .
MULTIMEDIA SYSTEMS, 2024, 30 (05)
[47]   Mitigate the scale imbalance via multi-scale information interaction in small object detection [J].
Enhui Chai ;
Li Chen ;
Xingxing Hao ;
Wei Zhou .
Neural Computing and Applications, 2024, 36 :1699-1712
[48]   End to End Multi-Scale Convolutional Neural Network for Crowd Counting [J].
Ji, Deyi ;
Lu, Hongtao ;
Zhang, Tongzhen .
ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2018), 2019, 11041
[49]   An integrated multi-scale context-aware network for efficient desnowing [J].
Agyemang, Samuel Akwasi ;
Shi, Haobin ;
Nie, Xuan ;
Asabere, Nana Yaw .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 151
[50]   Mitigate the scale imbalance via multi-scale information interaction in small object detection [J].
Chai, Enhui ;
Chen, Li ;
Hao, Xingxing ;
Zhou, Wei .
NEURAL COMPUTING & APPLICATIONS, 2024, 36 (04) :1699-1712