Role of Self-Heating and Polarization in AlGaN/GaN-Based Heterostructures

被引:15
作者
Ahmeda, Khaled [1 ]
Ubochi, Brendan [1 ]
Benbakhti, Brahim [2 ]
Duffy, Steven J. [2 ]
Soltani, Ali [3 ,4 ]
Zhang, Wei Dong [2 ]
Kalna, Karol [1 ]
机构
[1] Swansea Univ, Coll Elect & Elect Engn, Nanoelect Devices Computat Grp, Swansea SA2 8PP, W Glam, Wales
[2] Liverpool John Moores Univ, Dept Elect & Elect Engn, Liverpool L3 3AF, Merseyside, England
[3] Univ Sherbrooke, Lab Nanotechnol & Nanosyst, Sherbrooke, PQ J1K 0A5, Canada
[4] Univ Lille, Inst Elect Microelect & Nanotechnol, F-59650 Lille, France
来源
IEEE ACCESS | 2017年 / 5卷
关键词
III-V nitrides; self-heating; polarization; TLM structures; electro-thermal transport simulations; ELECTRON-MOBILITY TRANSISTORS; GAN; SEMICONDUCTOR; HEMTS; PERFORMANCE; TRANSPORT; DEFECTS; HFETS; FIELD;
D O I
10.1109/ACCESS.2017.2755984
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The interplay of self-heating and polarization affecting resistance is studied in AlGaN/GaN transmission line model (TLM) heterostructures with a scaled source-to-drain distance. This paper is based on meticulously calibrated TCAD simulations against I-V experimental data using an electro-thermal model. The electro-thermal simulations show hot-spots (with peak temperature in a range of similar to 566 K-373 K) at the edge of the drain contact due to a large electric field. The electrical stress on Ohmic contacts reduces the total polarization, leading to the inverse/converse piezoelectric effect. This inverse effect decreases the polarization by 7%, 10%, and 17% during a scaling of the source-to-drain distance in the 12 mu m, 8 mu m, and 4 mu m TLM heterostructures, respectively, when compared with the largest 18-mu m heterostructure.
引用
收藏
页码:20946 / 20952
页数:7
相关论文
共 32 条
[11]   Transient electron transport in wurtzite GaN, InN, and AlN [J].
Foutz, BE ;
O'Leary, SK ;
Shur, MS ;
Eastman, LF .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (11) :7727-7734
[12]  
Ishida Masahiro, 2010, 2010 International Power Electronics Conference (IPEC - Sapporo), P1014, DOI 10.1109/IPEC.2010.5542030
[13]   Gate current degradation mechanisms of GaN high electron mobility transistors [J].
Joh, Jungwoo ;
Xia, Ling ;
del Alamo, Jesus A. .
2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, :385-388
[14]   Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges [J].
Jones, Edward A. ;
Wang, Fei ;
Costinett, Daniel .
IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2016, 4 (03) :707-719
[15]   Self-Heating in GaN Transistors Designed for High-Power Operation [J].
Kuzmik, Jan ;
Tapajna, Milan ;
Valik, Lukas ;
Molnar, Marian ;
Donoval, Daniel ;
Fleury, Clement ;
Pogany, Dionyz ;
Strasser, Gottfried ;
Hilt, Oliver ;
Brunner, Frank ;
Wuerfl, Joachim .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (10) :3429-3434
[16]   Proposal and Performance Analysis of Normally Off n++ GaN/InAlN/AlN/GaN HEMTs With 1-nm-Thick InAlN Barrier [J].
Kuzmik, Jan ;
Ostermaier, Clemens ;
Pozzovivo, G. ;
Basnar, Bernhard ;
Schrenk, Werner ;
Carlin, Jean-Francois ;
Gonschorek, M. ;
Feltin, Eric ;
Grandjean, Nicolas ;
Douvry, Y. ;
Gaquiere, Christophe ;
De Jaeger, Jean-Claude ;
Cico, K. ;
Froehlich, Karol ;
Skriniarova, J. ;
Kovac, Jaroslav ;
Strasser, Gottfried ;
Pogany, Dionyz ;
Gornik, Erich .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (09) :2144-2154
[17]   Nitrogen-vacancy-related defects and Fermi level pinning in n-GaN Schottky diodes [J].
Lin, YJ ;
Ker, Q ;
Ho, CY ;
Chang, HC ;
Chien, FT .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (03) :1819-1822
[18]  
Palankovski V., 2004, ANAL SIMULATION HETE, P44
[19]  
Rajasingam S., 2014, IEEE ELECTR DEVICE L, V25, P456
[20]   Investigation of self-heating effects in submicrometer GaN/AlGaN HEMTs using an electrothermal Monte Carlo method [J].
Sadi, Toufik ;
Kelsall, Robert W. ;
Pilgrim, Neil J. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (12) :2892-2900