Shear correction factors in Timoshenko's beam theory for arbitrary shaped cross-sections

被引:144
作者
Gruttmann, F
Wagner, W
机构
[1] Tech Univ Darmstadt, Inst Statik, D-64283 Darmstadt, Germany
[2] Univ Karlsruhe, Inst Baustatik, D-76131 Karlsruhe, Germany
关键词
Shear Stress; Variational Formulation; Element Formulation; Linear Elasticity; Beam Theory;
D O I
10.1007/s004660100239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper shear correction factors for arbitrary shaped beam cross-sections are calculated. Based on the equations of linear elasticity and further assumptions for the stress field the boundary value problem and a variational formulation are developed. The shear stresses are obtained from derivatives of the warping function. The developed element formulation can easily be implemented in a standard finite element program. Continuity conditions which occur for multiple connected domains are automatically fulfilled.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 16 条
[1]  
Bach C, 1924, ELASTIZITAT FESTIGKE
[2]   SHEAR COEFFICIENT IN TIMOSHENKOS BEAM THEORY [J].
COWPER, GR .
JOURNAL OF APPLIED MECHANICS, 1966, 33 (02) :335-&
[3]  
Goodier J. N., 1944, J AERONAUT SCI, V11, P272, DOI 10.2514/8.11143
[4]  
Gruttmann F, 1999, INT J NUMER METH ENG, V45, P865, DOI 10.1002/(SICI)1097-0207(19990710)45:7<865::AID-NME609>3.0.CO
[5]  
2-3
[6]  
Gruttmann F., 1998, BAUINGENIEUR, V73, P138
[7]  
MASON WE, 1968, ASCE J ENG MECH DIVI, V94, P965
[8]   The shear centre in a beam bent by a concentrated load [J].
Schwalbe, WL .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1935, 15 :138-143
[9]  
Sokolnikoff I.S., 1946, Mathematical Theory of Elasticity LK
[10]  
Stojek D., 1964, ZAMM, V44, P393