Microstructure optimization of austenitic Alloy 800H (Fe-21Cr-32Ni)

被引:42
|
作者
Tan, L. [1 ,3 ]
Rakotojaona, L. [2 ]
Allen, T. R. [3 ]
Nanstad, R. K. [1 ]
Busby, J. T. [1 ]
机构
[1] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[2] Ecole Mines Paris, F-75006 Paris, France
[3] Univ Wisconsin, Madison, WI 53706 USA
关键词
Grain boundaries; Thermomechanical processing; Precipitation; Carbides; Dislocations; GRAIN; PRECIPITATION; BOUNDARIES; OXIDATION; BEHAVIOR;
D O I
10.1016/j.msea.2010.12.052
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microstructural evolution, specifically of grain boundaries, precipitates, and dislocations in thermo-mechanically processed (TMP) Alloy 800H samples was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), electron backscattered diffraction (EBSD), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The TMP not only significantly increased the fraction of low-Sigma coincidence site lattice boundaries, but also introduced nanoscale precipitates in the matrix and altered the distribution of dislocations. Statistical analysis indicates that the morphology and distribution of grain boundary precipitates were dependent on grain boundary types. The microstructure optimization played a synergistic effect on the significantly increased strength with comparable ductility and enhanced intergranular corrosion resistance and creep-fatigue life compared to the as-received samples. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2755 / 2761
页数:7
相关论文
共 50 条
  • [1] Corrosion behavior of alloy 800H (Fe-21Cr-32Ni) in supercritical water
    Tan, L.
    Allen, T. R.
    Yang, Y.
    CORROSION SCIENCE, 2011, 53 (02) : 703 - 711
  • [2] Characterization of in-situ ion irradiated Fe-21Cr-32Ni austenitic model alloy and alloy 800H at low doses
    Ayanoglu, M.
    Ulmer, C. J.
    Motta, A. T.
    JOURNAL OF NUCLEAR MATERIALS, 2021, 555
  • [3] Thermomechanical treatment for improved neutron irradiation resistance of austenitic alloy (Fe-21Cr-32Ni)
    Tan, L.
    Busby, J. T.
    Chichester, H. J. M.
    Sridharan, K.
    Allen, T. R.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 437 (1-3) : 70 - 74
  • [4] Irradiated microstructure of alloy 800H
    Gan, J
    Cole, JI
    Allen, TR
    Shutthanandan, S
    Thevuthasan, S
    JOURNAL OF NUCLEAR MATERIALS, 2006, 351 (1-3) : 223 - 227
  • [5] A NEW FE-NI-CO-CR FILLER METAL FOR JOINING ALLOY 800H
    ERNST, SC
    LAI, GY
    MATERIALS PERFORMANCE, 1989, 28 (08) : 58 - 61
  • [6] Effect of surface finishing on the oxidation characteristics of a Fe-21Cr-32Ni alloy in supercritical carbon dioxide
    Chen, Kai
    Liu, Zhu
    Guo, Xianglong
    Wang, Hui
    Shen, Zhao
    Zeng, Xiaoqin
    CORROSION SCIENCE, 2022, 195
  • [7] Mechanisms of dynamic recrystallization in austenitic steel alloy 800H
    Frommert, M
    Brünger, E
    Wang, X
    Gottstein, G
    RECRYSTALLIZATION AND GRAIN GROWTH, VOLS 1 AND 2, 2001, : 937 - 942
  • [8] Microstructure characterization and dynamic recrystallization in an Alloy 800H
    Wang, X
    Brünger, E
    Gottstein, G
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 290 (1-2): : 180 - 185
  • [9] Research on the hot deformation behavior of a Fe-Ni-Cr alloy (800H) at temperatures above 1000 °C
    Cao, Yu
    Di, Hongshuang
    JOURNAL OF NUCLEAR MATERIALS, 2015, 465 : 104 - 115
  • [10] Nucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H
    Brunger, E
    Wang, X
    Gottstein, G
    SCRIPTA MATERIALIA, 1998, 38 (12) : 1843 - 1849