Singular perturbation;
Uniform convergence;
Finite element method;
Shishkin triangular mesh;
Supercloseness;
Two parameters;
CONVECTION-DIFFUSION PROBLEMS;
INTERIOR PENALTY METHOD;
D O I:
10.1016/j.amc.2021.126753
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider a singularly perturbed elliptic problem with two parameters in two dimensions. Using linear finite element method on a Shishkin triangular mesh, we prove the uniform convergence and supercloseness in an energy norm. Some integral inequalities play an important role in our analysis. Numerical tests verify our theoretical results. (C) 2021 Elsevier Inc. All rights reserved.
机构:
Univ Novi Sad, Fac Tech Sci, Dept Fundamental Disciplines, Novi Sad 21000, SerbiaUniv Novi Sad, Fac Tech Sci, Dept Fundamental Disciplines, Novi Sad 21000, Serbia
Teofanov, Ljiljana
Zarin, Helena
论文数: 0引用数: 0
h-index: 0
机构:
Univ Novi Sad, Fac Sci, Dept Math & Informat, Novi Sad 21000, SerbiaUniv Novi Sad, Fac Tech Sci, Dept Fundamental Disciplines, Novi Sad 21000, Serbia