Estimates for the difference between approximate and exact solutions to stochastic differential equations in the G-framework

被引:3
作者
Faizullah, Faiz [1 ,2 ]
Khan, Ilyas [3 ,4 ,5 ]
Salah, Mukhtar M. [4 ,5 ]
Alhussain, Ziyad Ali [5 ]
机构
[1] Swansea Univ, Dept Math, Swansea, W Glam, Wales
[2] NUST, Dept Basic Sci & Humanities, Coll Elect & Mech Engn, Islamabad, Pakistan
[3] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[4] Majmaah Univ, Coll Engn, Basic Engn Sci Dept, Majmaah, Saudi Arabia
[5] Majmaah Univ, Coll Sci, Dept Math, Majmaah, Saudi Arabia
关键词
G-Brownian motion; stochastic differential equations; non-linear growth and non-Lipschitz conditions; estimates; bounded solutions; G-BROWNIAN MOTION; DRIVEN; EXISTENCE; UNIQUENESS; CALCULUS; TIMES;
D O I
10.1080/16583655.2018.1519884
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article investigates the Euler-Maruyama approximation procedure for stochastic differential equations in the framework of G-Browinian motion with non-linear growth and non-Lipschitz conditions. The results are derived by using the Burkholder-Davis-Gundy (in short BDG), Holder's, Doobs martingale's and Gronwall's inequalities. Subject to non-linear growth condition, it is revealed that the Euler-Maruyama approximate solutions are bounded in . In view of non-linear growth and non-uniform Lipschitz conditions, we give estimates for the difference between the exact solution and approximate solutions of SDEs in the framework of G-Brownian motion.
引用
收藏
页码:20 / 26
页数:7
相关论文
共 26 条
[1]   On the Existence and Uniqueness of Solutions to Stochastic Differential Equations Driven by G-Brownian Motion with Integral-Lipschitz Coefficients [J].
Bai, Xue-peng ;
Lin, Yi-qing .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (03) :589-610
[2]   Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths [J].
Denis, Laurent ;
Hu, Mingshang ;
Peng, Shige .
POTENTIAL ANALYSIS, 2011, 34 (02) :139-161
[3]  
Faizullah F., 2016, J COMPUT THEOR NANOS, V7, P1
[4]  
Faizullah F, 2016, IRAN J SCI TECHNOL A, V3, P1
[5]  
Faizullah F., 2018, EXISTENCE ASYMPTOTIC
[6]  
Faizullah F., 2018, STOCHASTIC FUNCTIONA
[7]  
Faizullah F, 2017, J COMPUT ANAL APPL, V23, P693
[8]  
Faizullah F, 2017, J COMPUT ANAL APPL, V23, P344
[9]   On the pth moment estimates of solutions to stochastic functional differential equations in the G-framework [J].
Faizullah, Faiz .
SPRINGERPLUS, 2016, 5
[10]   Existence of Solutions for Stochastic Differential Equations under G-Brownian Motion with Discontinuous Coefficients [J].
Faizullah, Faiz .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (12) :692-698