Global solutions of the heat equation with a nonlinear boundary condition

被引:17
作者
Ishige, Kazuhiro [1 ]
Kawakami, Tatsuki [1 ]
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
关键词
PARABOLIC EQUATIONS; BLOW-UP; BEHAVIOR; TIME;
D O I
10.1007/s00526-010-0316-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the heat equation with a nonlinear boundary condition, (P) { partial derivative(t)u = Delta u, x is an element of Omega, t>0, partial derivative(v)u = u(p), x is an element of partial derivative Omega, t>0, u(x,0) = phi(x), x is an element of Omega, where Omega = {x = (x', x(N)) is an element of R(N) : x(N) > 0}, N >= 2, partial derivative(t) =partial derivative/partial derivative(t), partial derivative(v) = -partial derivative/partial derivative x(N), p > 1+1/N, and (N - 2) p < N. In this paper we give a complete classification of the large time behaviors of the nonnegative global solutions of ( P).
引用
收藏
页码:429 / 457
页数:29
相关论文
共 24 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]  
Chlebik M., 2000, BANACH CTR PUBL, V52, P61
[3]  
Chlebk M., 1999, Rend. Mat. Appl. (7) 19, V4, P449
[4]  
Deng K., 1994, Acta Math. Univ. Comenian. (N.S.), V63, P169
[5]   VARIATIONAL-PROBLEMS RELATED TO SELF-SIMILAR SOLUTIONS OF THE HEAT-EQUATION [J].
ESCOBEDO, M ;
KAVIAN, O .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (10) :1103-1133
[6]   Blow-up on the boundary for the heat equation [J].
Fila, M ;
Filo, J ;
Lieberman, GM .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 10 (01) :85-99
[7]  
FILA M, 1996, BANACH CTR PUBL, V33, P67
[8]  
Fila M., 1989, COMMENT MATH U CAROL, V30, P479
[9]   On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary [J].
Galaktionov, VA ;
Levine, HA .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 94 :125-146
[10]   A BOUND FOR GLOBAL-SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (03) :415-421