Stability analysis of Atangana-Baleanu fractional stochastic differential systems with impulses

被引:13
作者
Dhayal, Rajesh [1 ]
Gomez-Aguilar, J. F.
Torres-Jimenez, J. [2 ]
机构
[1] Thapar Inst Engn & Technol, Sch Math, Patiala, Punjab, India
[2] Tecnol Nacl Mexico, Inst Tecnol Super Huauchinango, Ingn Elect Maestria Tecnol Informac, Huauchinango, Mexico
关键词
Stochastic system; Atangana-Baleanu fractional derivative; fractional Brownian motion; non-instantaneous impulses; stability; CONTROLLABILITY; EQUATIONS; DELAY;
D O I
10.1080/00207721.2022.2090638
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is devoted to exploring a new class of Atangana-Baleanu fractional stochastic differential systems driven by fractional Brownian motion with non-instantaneous impulsive effects. Using resolvent family, fixed point technique, and fractional calculus, we analysed the existence and uniqueness of the mild solution. Moreover, we discussed the stability criteria for the proposed problem. A numerical example is given to illustrate the theoretical results.
引用
收藏
页码:3481 / 3495
页数:15
相关论文
共 42 条
[1]   Non-Instantaneous Impulsive Fractional Differential Equations with State Dependent Delay and Practical Stability [J].
Agarwal, Ravi ;
Almeida, Ricardo ;
Hristova, Snezhana ;
O'Regan, Donal .
ACTA MATHEMATICA SCIENTIA, 2021, 41 (05) :1699-1718
[2]   NON-INSTANTANEOUS IMPULSES IN CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Agarwal, Ravi ;
Hristova, Snezhana ;
O'Regan, Donal .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (03) :595-622
[3]   A SURVEY OF LYAPUNOV FUNCTIONS, STABILITY AND IMPULSIVE CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Agarwal, Ravi ;
Hristova, Snezhana ;
O'Regan, Donal .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) :290-318
[4]   Exact Null Controllability of Sobolev-Type Hilfer Fractional Stochastic Differential Equations with Fractional Brownian Motion and Poisson Jumps [J].
Ahmed, Hamdy M. ;
Wang, JinRong .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (03) :673-690
[5]   Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay [J].
Aimene, D. ;
Baleanu, D. ;
Seba, D. .
CHAOS SOLITONS & FRACTALS, 2019, 128 :51-57
[6]  
[Anonymous], 2007, Stochastic Differential Equations and Applications, DOI [10.1533/9780857099402, DOI 10.1533/9780857099402]
[7]   On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses [J].
Arjunan, M. Mallika ;
Abdeljawad, Thabet ;
Kavitha, V. ;
Yousef, Ali .
CHAOS SOLITONS & FRACTALS, 2021, 148
[8]   Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu [J].
Atangana, Abdon ;
Gomez-Aguilar, J. F. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) :1502-1523
[9]   Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order [J].
Atangana, Abdon ;
Koca, Ilknur .
CHAOS SOLITONS & FRACTALS, 2016, 89 :447-454
[10]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769