Cooling mechanical resonators to the quantum ground state from room temperature

被引:27
作者
Liu, Yong-Chun [1 ,2 ,3 ]
Liu, Rui-Shan [1 ,2 ]
Dong, Chun-Hua [4 ]
Li, Yan [1 ,2 ,3 ]
Gong, Qihuang [1 ,2 ,3 ]
Xiao, Yun-Feng [1 ,2 ,3 ]
机构
[1] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[4] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Peoples R China
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 01期
关键词
RESOLVED-SIDE-BAND; RADIATION-PRESSURE; CAVITY OPTOMECHANICS; MICROMECHANICAL OSCILLATOR; MICROMIRROR; MIRROR; MOTION; MODE;
D O I
10.1103/PhysRevA.91.013824
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ground-state cooling ofmesoscopicmechanical resonators is a fundamental requirement for testing of quantum theory and for implementation of quantum information. We analyze the cavity optomechanical cooling limits in the intermediate coupling regime, where the light-enhanced optomechanical coupling strength is comparable with the cavity decay rate. It is found that in this regime the cooling breaks through the limits in both the strong-coupling and the weak-coupling regimes. The lowest cooling limit is derived analytically under the optimal conditions of cavity decay rate and coupling strength. In essence, cooling to the quantum ground state requires Q(m) > 2.4n(th), with Q(m) being the mechanical quality factor and n(th) being the thermal phonon number. Remarkably, ground-state cooling is achievable starting from room temperature, when the mechanical Q-frequency product Q(m)upsilon(m) > 1.5 x 10(13) Hz and both the cavity decay rate and the coupling strength exceed the thermal decoherence rate. Our study provides a general framework for optimizing the backaction cooling of mesoscopic mechanical resonators.
引用
收藏
页数:6
相关论文
共 70 条
[61]   Reservoir-Engineered Entanglement in Optomechanical Systems [J].
Wang, Ying-Dan ;
Clerk, Aashish A. .
PHYSICAL REVIEW LETTERS, 2013, 110 (25)
[62]   Using Interference for High Fidelity Quantum State Transfer in Optomechanics [J].
Wang, Ying-Dan ;
Clerk, Aashish A. .
PHYSICAL REVIEW LETTERS, 2012, 108 (15)
[63]   Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems [J].
Weiss, Talitha ;
Nunnenkamp, Andreas .
PHYSICAL REVIEW A, 2013, 88 (02)
[64]   Cavity Optomechanics with Stoichiometric SiN Films [J].
Wilson, D. J. ;
Regal, C. A. ;
Papp, S. B. ;
Kimble, H. J. .
PHYSICAL REVIEW LETTERS, 2009, 103 (20)
[65]   Theory of ground state cooling of a mechanical oscillator using dynamical backaction [J].
Wilson-Rae, I. ;
Nooshi, N. ;
Zwerger, W. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (09)
[66]   Cavity-assisted backaction cooling of mechanical resonators [J].
Wilson-Rae, I. ;
Nooshi, N. ;
Dobrindt, J. ;
Kippenberg, T. J. ;
Zwerger, W. .
NEW JOURNAL OF PHYSICS, 2008, 10
[67]   Dissipative Optomechanics in a Michelson-Sagnac Interferometer [J].
Xuereb, Andre ;
Schnabel, Roman ;
Hammerer, Klemens .
PHYSICAL REVIEW LETTERS, 2011, 107 (21)
[68]   Dissipative optomechanical coupling between a single-wall carbon nanotube and a high-Q microcavity [J].
Yan, Meng-Yuan ;
Li, Hao-Kun ;
Liu, Yong-Chun ;
Jin, Wei-Liang ;
Xiao, Yun-Feng .
PHYSICAL REVIEW A, 2013, 88 (02)
[69]   Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling [J].
Yin, Zhang-qi ;
Li, Tongcang ;
Zhang, Xiang ;
Duan, L. M. .
PHYSICAL REVIEW A, 2013, 88 (03)
[70]   Phase noise and laser-cooling limits of optomechanical oscillators [J].
Yin, Zhang-qi .
PHYSICAL REVIEW A, 2009, 80 (03)