Cooling mechanical resonators to the quantum ground state from room temperature

被引:27
作者
Liu, Yong-Chun [1 ,2 ,3 ]
Liu, Rui-Shan [1 ,2 ]
Dong, Chun-Hua [4 ]
Li, Yan [1 ,2 ,3 ]
Gong, Qihuang [1 ,2 ,3 ]
Xiao, Yun-Feng [1 ,2 ,3 ]
机构
[1] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[4] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Peoples R China
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 01期
关键词
RESOLVED-SIDE-BAND; RADIATION-PRESSURE; CAVITY OPTOMECHANICS; MICROMECHANICAL OSCILLATOR; MICROMIRROR; MIRROR; MOTION; MODE;
D O I
10.1103/PhysRevA.91.013824
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ground-state cooling ofmesoscopicmechanical resonators is a fundamental requirement for testing of quantum theory and for implementation of quantum information. We analyze the cavity optomechanical cooling limits in the intermediate coupling regime, where the light-enhanced optomechanical coupling strength is comparable with the cavity decay rate. It is found that in this regime the cooling breaks through the limits in both the strong-coupling and the weak-coupling regimes. The lowest cooling limit is derived analytically under the optimal conditions of cavity decay rate and coupling strength. In essence, cooling to the quantum ground state requires Q(m) > 2.4n(th), with Q(m) being the mechanical quality factor and n(th) being the thermal phonon number. Remarkably, ground-state cooling is achievable starting from room temperature, when the mechanical Q-frequency product Q(m)upsilon(m) > 1.5 x 10(13) Hz and both the cavity decay rate and the coupling strength exceed the thermal decoherence rate. Our study provides a general framework for optimizing the backaction cooling of mesoscopic mechanical resonators.
引用
收藏
页数:6
相关论文
共 70 条
[1]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74
[2]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[3]   Reversible Optical-to-Microwave Quantum Interface [J].
Barzanjeh, Sh ;
Abdi, M. ;
Milburn, G. J. ;
Tombesi, P. ;
Vitali, D. .
PHYSICAL REVIEW LETTERS, 2012, 109 (13)
[4]   Dissipation in Ultrahigh Quality Factor SiN Membrane Resonators [J].
Chakram, S. ;
Patil, Y. S. ;
Chang, L. ;
Vengalattore, M. .
PHYSICAL REVIEW LETTERS, 2014, 112 (12)
[5]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[6]   Ultrahigh-Q mechanical oscillators through optical trapping [J].
Chang, D. E. ;
Ni, K-K ;
Painter, O. ;
Kimble, H. J. .
NEW JOURNAL OF PHYSICS, 2012, 14
[7]   Cooling of a mirror by radiation pressure [J].
Cohadon, PF ;
Heidmann, A ;
Pinard, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (16) :3174-3177
[8]   Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK [J].
Corbitt, Thomas ;
Wipf, Christopher ;
Bodiya, Timothy ;
Ottaway, David ;
Sigg, Daniel ;
Smith, Nicolas ;
Whitcomb, Stanley ;
Mavalvala, Nergis .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[9]   ROUTH-HURWITZ CRITERION IN THE EXAMINATION OF EIGENVALUES OF A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL-EQUATIONS [J].
DEJESUS, EX ;
KAUFMAN, C .
PHYSICAL REVIEW A, 1987, 35 (12) :5288-5290
[10]   Parametric Normal-Mode Splitting in Cavity Optomechanics [J].
Dobrindt, J. M. ;
Wilson-Rae, I. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)