Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment

被引:52
作者
Bardet, Raphael [1 ,2 ]
Reverdy, Charlene [1 ,2 ]
Belgacem, Naceur [1 ,2 ]
Leirset, Ingebjorg [3 ]
Syverud, Kristin [3 ,4 ]
Bardet, Michel [5 ,6 ]
Bras, Julien [1 ,2 ]
机构
[1] Univ Grenoble Alpes, LGP2, F-38000 Grenoble, France
[2] CNRS, LGP2, F-38000 Grenoble, France
[3] Paper & Fiber Res Inst PFI, N-7491 Trondheim, Norway
[4] Norwegian Univ Sci & Technol NTNU, Trondheim, Norway
[5] Univ Grenoble Alpes, INAC, F-38000 Grenoble, France
[6] CEA, SCIB, INAC, F-38000 Grenoble, France
关键词
Cellulose nanofibril; Barrier properties; Cellulose nanocrystal; Montmorillonite; Thermal treatment; Nanoclay; MICROFIBRILLATED CELLULOSE; NANOCELLULOSE; PERFORMANCE; OXIDATION; WOOD;
D O I
10.1007/s10570-015-0547-9
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
The aim of this study is to design a nanocellulose based barrier film. For this purpose, cellulose nanofibrils (CNFs) are used as a matrix to create an entangled nanoporous network that is filled with two different nanofillers: nanoclay (reference), i.e. the mineral montmorillonite (MMT) and the bio-based TEMPO-oxidized cellulose nanocrystal (CNC-T), to produce different types of nanocelluloses and their main physical and chemical features were assessed. As expected, films based on neat CNFs exhibit good mechanical performance and excellent barrier properties at low moisture content. The introduction of 32.5 wt% of either nanofiller results in a significant improvement of barrier properties at high moisture content. Finally, thermal treatment of a dried CNF/CNC-T film results in a decrease of the oxygen permeability even at high moisture content (> 70 %). This is mainly attributed to the hornification of nanocellulose. A key result of this study is that the oxygen permeability of an all-nanocellulose film in 85 % relative humidity (RH), is similar to CNF film with mineral nanoclay (MMT), i.e. 2.1 instead of 1.7 cm(3) A mu m m(-2) day(-1) kPa(-1), respectively.
引用
收藏
页码:1227 / 1241
页数:15
相关论文
共 43 条
[1]   Cytotoxicity tests of cellulose nanofibril-based structures [J].
Alexandrescu, Laura ;
Syverud, Kristin ;
Gatti, Antonietta ;
Chinga-Carrasco, Gary .
CELLULOSE, 2013, 20 (04) :1765-1775
[2]   Influence of surface charge on viscosity behavior of cellulose microcrystal suspension [J].
Araki, J ;
Wada, M ;
Kuga, S ;
Okana, T .
JOURNAL OF WOOD SCIENCE, 1999, 45 (03) :258-261
[3]   The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses [J].
Atalla, RH ;
VanderHart, DL .
SOLID STATE NUCLEAR MAGNETIC RESONANCE, 1999, 15 (01) :1-19
[4]   High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability [J].
Aulin, Christian ;
Salazar-Alvarez, German ;
Lindstrom, Tom .
NANOSCALE, 2012, 4 (20) :6622-6628
[5]   Oxygen and oil barrier properties of microfibrillated cellulose films and coatings [J].
Aulin, Christian ;
Gallstedt, Mikael ;
Lindstrom, Tom .
CELLULOSE, 2010, 17 (03) :559-574
[6]   Thermal response in crystalline Iβ cellulose:: A molecular dynamics study [J].
Bergenstrahle, Malin ;
Berglund, Lars A. ;
Mazeau, Karim .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (30) :9138-9145
[7]  
Chauve G, 2014, MATER ENERG, V5, P233
[8]   Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view [J].
Chinga-Carrasco, Gary .
NANOSCALE RESEARCH LETTERS, 2011, 6 :1-7
[9]   Thermal stabilization of TEMPO-oxidized cellulose [J].
Fukuzumi, Hayaka ;
Saito, Tsuguyuki ;
Okita, Yusuke ;
Isogai, Akira .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (09) :1502-1508
[10]   Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation [J].
Fukuzumi, Hayaka ;
Saito, Tsuguyuki ;
Wata, Tadahisa ;
Kumamoto, Yoshiaki ;
Isogai, Akira .
BIOMACROMOLECULES, 2009, 10 (01) :162-165