Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms

被引:346
作者
Liu, Yong [1 ]
Busscher, Henk J. [2 ,3 ]
Zhao, Bingran [4 ,5 ]
Li, Yuanfeng [1 ]
Zhang, Zhenkun [1 ]
van der Mei, Henny C. [2 ,3 ]
Ren, Yijin [4 ,5 ]
Shi, Linqi [1 ]
机构
[1] Nankai Univ, State Key Lab Med Chem Biol, Key Lab Funct Polymer Mat, Minist Educ,Inst Polymer Chem,Collaborat Innovat, Tianjin 300071, Peoples R China
[2] Univ Groningen, Antonius Deusinglaan 1, NL-9713 AV Groningen, Netherlands
[3] Univ Med Ctr Groningen, Dept Biomed Engn, Antonius Deusinglaan 1, NL-9713 AV Groningen, Netherlands
[4] Univ Groningen, Hanzepl 1, NL-9700 RB Groningen, Netherlands
[5] Univ Med Ctr Groningen, Dept Orthodont, Hanzepl 1, NL-9700 RB Groningen, Netherlands
基金
中国国家自然科学基金;
关键词
biofilm; antimicrobials; micelles; Triclosan; staphylococci; electrostatic interactions; pH-responsiveness; BACTERIAL BIOFILMS; DRUG-DELIVERY; POLYMERIC NANOPARTICLES; ANTIBACTERIAL AGENTS; INFECTIOUS-DISEASES; ESCHERICHIA-COLI; IN-VITRO; TRICLOSAN; ANTIBIOTICS; SILVER;
D O I
10.1021/acsnano.6b01370
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biofilms cause persistent bacterial infections and are extremely recalcitrant to antimicrobials, due in part to reduced penetration of antimicrobials into biofilms that allows bacteria residing in the depth of a biofilm to survive antimicrobial treatment. Here, we describe the preparation of surface-adaptive, Triclosan-loaded micellar nanocarriers showing (1) enhanced biofilm penetration and accumulation, (2) electrostatic targeting at acidic pH toward negatively charged bacterial cell surfaces in a biofilm, and (3) antimicrobial release due to degradation of the micelle core by bacterial lipases. First, it was established that mixed-shell-polymeric-micelles (MSPM) consisting of a hydrophilic poly(ethylene glycol) (PEG)-shell and pH-responsive poly(beta-amino ester) become positively charged at pH 5.0, while being negatively charged at physiological pH. This is opposite to single-shell-polymeric-micelles (SSPM) possessing only a PEG-shell and remaining negatively charged at pH 5.0. The stealth properties of the PEG-shell combined with its surface adaptive charge allow MSPMs to penetrate and accumulate in staphylococcal biofilms, as demonstrated for fluorescent Nile red loaded micelles using confocal-laser-scanning-microscopy. SSPMs, not adapting a positive charge at pH 5.0, could not be demonstrated to penetrate and accumulate in a biofilm. Once micellar nanocarriers are bound to a staphylococcal cell surface, bacterial enzymes degrade the MSPM core to release its antimicrobial content and kill bacteria over the depth of a biofilm. This constitutes a highly effective pathway to control blood-accessible staphylococcal biofilms using antimicrobials, bypassing biofilm recalcitrance to antimicrobial penetration.
引用
收藏
页码:4779 / 4789
页数:11
相关论文
共 51 条
[41]  
Tu YS, 2013, NAT NANOTECHNOL, V8, P594, DOI [10.1038/nnano.2013.125, 10.1038/NNANO.2013.125]
[42]   Polymeric systems for controlled drug release [J].
Uhrich, KE ;
Cannizzaro, SM ;
Langer, RS ;
Shakesheff, KM .
CHEMICAL REVIEWS, 1999, 99 (11) :3181-3198
[43]   A method to study sustained antimicrobial activity of rinse and dentifrice components on biofilm viability in vivo [J].
van der Mei, HC ;
White, DJ ;
Atema-Smit, J ;
van de Belt-Gritter, E ;
Busscher, HJ .
JOURNAL OF CLINICAL PERIODONTOLOGY, 2006, 33 (01) :14-20
[44]   Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin [J].
van Oosten, Marleen ;
Schaefer, Tina ;
Gazendam, Joost A. C. ;
Ohlsen, Knut ;
Tsompanidou, Eleni ;
de Goffau, Marcus C. ;
Harmsen, Hermie J. M. ;
Crane, Lucia M. A. ;
Lim, Ed ;
Francis, Kevin P. ;
Cheung, Lael ;
Olive, Michael ;
Ntziachristos, Vasilis ;
van Dijl, Jan Maarten ;
van Dam, Gooitzen M. .
NATURE COMMUNICATIONS, 2013, 4
[45]   More Effective Nanomedicines through Particle Design [J].
Wang, Jin ;
Byrne, James D. ;
Napier, Mary E. ;
DeSimone, Joseph M. .
SMALL, 2011, 7 (14) :1919-1931
[46]   Nanomaterials for the Treatment of Bacterial Biofilms [J].
Wang, Li-Sheng ;
Gupta, Akash ;
Rotello, Vincent M. .
ACS INFECTIOUS DISEASES, 2016, 2 (01) :3-4
[47]   Lipase-Sensitive Polymeric Triple-Layered Nanogel for "On-Demand" Drug Delivery [J].
Xiong, Meng-Hua ;
Bao, Yan ;
Yang, Xian-Zhu ;
Wang, Yu-Cai ;
Sun, Baolin ;
Wang, Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) :4355-4362
[48]   Formation and enhanced biocidal activity of water-dispersable organic nanoparticles [J].
Zhang, Haifei ;
Wang, Dong ;
Butler, Rachel ;
Campbell, Neil L. ;
Long, James ;
Tan, Bien ;
Duncalf, David J. ;
Foster, Alison J. ;
Hopkinson, Andrew ;
Taylor, David ;
Angus, Doris ;
Cooper, Andrew I. ;
Rannard, Steven P. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :506-511
[49]   Cooperative Macromolecular Self-Assembly toward Polymeric Assemblies with Multiple and Bioactive Functions [J].
Zhang, Zhenkun ;
Ma, Rujiang ;
Shi, Linqi .
ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (04) :1426-1437
[50]   Small Molecule-Capped Gold Nanoparticles as Potent Antibacterial Agents That Target Gram-Negative Bacteria [J].
Zhao, Yuyun ;
Tian, Yue ;
Cui, Yan ;
Liu, Wenwen ;
Ma, Wanshun ;
Jiang, Xingyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (35) :12349-12356