Stabilizing Interfacial Reactions for Stable Cycling of High-Voltage Sodium Batteries

被引:50
作者
Jin, Yan [1 ]
Xu, Yaobin [2 ]
Xiao, Biwei [1 ]
Engelhard, Mark H. [2 ]
Yi, Ran [1 ]
Vo, Thanh D. [1 ]
Matthews, Bethany E. [1 ]
Li, Xiaolin [1 ]
Wang, Chongmin [2 ]
Le, Phung M. L. [1 ]
Zhang, Ji-Guang [1 ]
机构
[1] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA
[2] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA
关键词
electrode; electrolyte interphases; electrolytes; high-voltage cathodes; sodium batteries; solid electrolyte interphase dissolution; ION BATTERIES; ELECTROLYTES; CATHODE;
D O I
10.1002/adfm.202204995
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing advanced electrolytes is critical for stabilizing electrode/electrolyte interfacial reactions and thus extending cycling stability of sodium (Na) batteries, especially when a high-voltage cathode (such as NaNi0.68Mn0.22Co0.10O2 (NaNMC)) is used to achieve high energy density in batteries. Here, an advanced electrolyte based on sodium bis(fluorosulfonyl)imide (NaFSI)-triethyl phosphate, which is highly stable against a high-voltage cathode, enabling long-term cycling of sodium batteries, is reported. Na||NaNMC cells with this electrolyte demonstrate 89% capacity retention after 500 cycles with a cutoff voltage of 4.2 V versus Na/Na+. A full cell of hard carbon||NaNMC also exhibits good capacity retention of 83.5% after 200 cycles. Postmortem analyses on the cycled electrodes reveal that stabilization of the high-voltage cathode can be attributed to the formation of a stable electrode/electrolyte interphase layer. The interphase is generated mainly by salt decomposition, which suppresses transition metal dissolution and surface reconstruction on the cathode. The optimized electrolyte can minimize solid electrolyte interphase dissolution to avoid capacity loss. This study offers a feasible pathway to achieve extended cycling of high-voltage sodium batteries and guide further improvements in cycling performance of batteries by manipulating the chemistry of the electrolytes and interphase properties.
引用
收藏
页数:8
相关论文
共 45 条
[1]   How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? [J].
Abraham, K. M. .
ACS ENERGY LETTERS, 2020, 5 (11) :3544-3547
[2]   Electrolyte Volume Effects on Electrochemical Performance and Solid Electrolyte Interphase in Si-Graphite/NMC Lithium-Ion Pouch Cells [J].
An, Seong Jin ;
Li, Jianlin ;
Daniel, Claus ;
Meyer, Harry M., III ;
Trask, Stephen E. ;
Polzin, Bryant J. ;
Wood, David L., III .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) :18799-18808
[3]   The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies [J].
Bauer, Alexander ;
Song, Jie ;
Vail, Sean ;
Pan, Wei ;
Barker, Jerry ;
Lu, Yuhao .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[4]   High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode [J].
Deng, Jianqiu ;
Luo, Wen-Bin ;
Lu, Xiao ;
Yao, Qingrong ;
Wang, Zhongmin ;
Liu, Hua-Kun ;
Zhou, Huaiying ;
Dou, Shi-Xue .
ADVANCED ENERGY MATERIALS, 2018, 8 (05)
[5]   Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry [J].
Dou, Xinwei ;
Hasa, Ivana ;
Saurel, Damien ;
Vaalma, Christoph ;
Wu, Liming ;
Buchholz, Daniel ;
Bresser, Dominic ;
Komaba, Shinichi ;
Passerini, Stefano .
MATERIALS TODAY, 2019, 23 :87-104
[6]   Electrolytes and Interphases in Sodium-Based Rechargeable Batteries: Recent Advances and Perspectives [J].
Eshetu, Gebrekidan Gebresilassie ;
Elia, Giuseppe Antonio ;
Armand, Michel ;
Forsyth, Maria ;
Komaba, Shinichi ;
Rojo, Teofilo ;
Passerini, Stefano .
ADVANCED ENERGY MATERIALS, 2020, 10 (20)
[7]   Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions [J].
Eshetu, Gebrekidan Gebresilassie ;
Grugeon, Sylvie ;
Kim, Huikyong ;
Jeong, Sangsik ;
Wu, Liming ;
Gachot, Gregory ;
Laruelle, Stephane ;
Armand, Michel ;
Passerini, Stefano .
CHEMSUSCHEM, 2016, 9 (05) :462-471
[8]   Influence of Salt Concentration on the Properties of Sodium-Based Electrolytes [J].
Geng, Chenxi ;
Buchholz, Daniel ;
Kim, Guk-Tae ;
Carvalho, Diogo Vieira ;
Zhang, Huang ;
Chagas, Luciana Gomes ;
Passerini, Stefano .
SMALL METHODS, 2019, 3 (04)
[9]   High-Voltage Electrolyte Chemistry for Lithium Batteries [J].
Guo, Kanglong ;
Qi, Shihan ;
Wang, Huaping ;
Huang, Junda ;
Wu, Mingguang ;
Yang, Yulu ;
Li, Xiu ;
Ren, Yurong ;
Ma, Jianmin .
SMALL SCIENCE, 2022, 2 (05)
[10]   Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes [J].
House, Robert A. ;
Maitra, Urmimala ;
Perez-Osorio, Miguel A. ;
Lozano, Juan G. ;
Jin, Liyu ;
Somerville, James W. ;
Duda, Laurent C. ;
Nag, Abhishek ;
Walters, Andrew ;
Zhou, Ke-Jin ;
Roberts, Matthew R. ;
Bruce, Peter G. .
NATURE, 2020, 577 (7791) :502-+