Lyapunov coefficients for an invisible fold-fold singularity in planar piecewise Hamiltonian systems

被引:10
作者
Braga, Denis de Carvalho [1 ]
da Fonseca, Alexander Fernandes [1 ]
Goncalves, Luiz Fernando [2 ]
Mello, Luis Fernando [1 ]
机构
[1] Univ Fed Itajuba, Inst Matemat & Comp, Ave BPS 1303, BR-37500903 Itajuba, MG, Brazil
[2] UNESP, Inst Biociencias Letras & Ciencias Exatas, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
关键词
Piecewise smooth vector field; Fold-fold singularity; Bifurcation; Limit cycle; Hamiltonian vector field; BIFURCATIONS;
D O I
10.1016/j.jmaa.2019.123692
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stability of an invisible fold-fold singularity of planar piecewise smooth Hamiltonian vector fields by computing some kind of Lyapunov coefficients. We obtain the general expressions for the first five Lyapunov coefficients. As a consequence, the bifurcation diagrams, illustrating the number, types and positions of the bifurcating small amplitude crossing limit cycles for these vector fields, are determined. @ 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 10 条
[1]  
Andronov A., 1966, International Series of Monographs in Physics, V4
[2]  
Andronov A. A., 1973, Theory of Bifurcations of Dynamical Systems on the Plane
[3]   Regularization around a generic codimension one fold-fold singularity [J].
Bonet-Reves, Carles ;
Larrosa, Juliana ;
M-Seara, Tere .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (05) :1761-1838
[4]  
Chicone C., 1999, ORDINARY DIFFERENTIA
[5]   Degenerate Hopf bifurcations in discontinuous planar systems [J].
Coll, B ;
Gasull, A ;
Prohens, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 253 (02) :671-690
[6]  
DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
[7]  
Filippov Aleksei Fedorovich, 1988, Differential Equations with Discontinuous Righthand Sides
[8]   Generic bifurcations of low codimension of planar Filippov Systems [J].
Guardia, M. ;
Seara, T. M. ;
Teixeira, M. A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1967-2023
[9]   One-parameter bifurcations in planar filippov systems [J].
Kuznetsov, YA ;
Rinaldi, S ;
Gragnani, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (08) :2157-2188
[10]  
Teixeira M.A., 2012, Mathematics of Complexity and Dynamical Systems, V1-3, P1325