Adsorption-enhanced spin-orbit coupling of buckled honeycomb silicon

被引:0
作者
Sun, Jia-Tao [1 ,2 ]
Chen, Wei [3 ,4 ]
Sakamoto, Kazuyuki [5 ]
Feng, Yuan Ping [4 ]
Wee, Andrew T. S. [4 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore
[4] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore
[5] Chiba Univ, Dept Nanomat Sci, Chiba 2638522, Japan
基金
中国国家自然科学基金;
关键词
Silicene; Spintronics; Spin orbit coupling; Density functional theory; ROOM-TEMPERATURE; GRAPHENE;
D O I
10.1016/j.physe.2016.04.022
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have studied the electronic structures of quasi-two-dimensional buckled honeycomb silicon (BHS) saturated by atomic hydrogen and fluorine by means of first-principles calculations. The graphene-like hexagonal silicon with chair configurations can be stabilized by atomic hydrogen and fluorine adsorption. Together with a magnetic ground state, large spin orbit coupling (SOC) of BHS saturated by hydrogen on either side (Semi-H-BHS) indicated by the band splitting of sigma bond at Gamma point in the Brillouin zone is attributed to the intermixing between the density of states of hydrogen atoms and pi bonds of unpassivated Si-2 around the Fermi level. The Zeeman spin splitting is most likely caused by the internal electric field induced by asymmetric charge transfer. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 145
页数:5
相关论文
共 50 条
  • [21] Spin-Hall effect in the generalized honeycomb lattice with Rashba spin-orbit interaction
    Liu, Guocai
    Wang, Zhigang
    Li, Shu-Shen
    PHYSICS LETTERS A, 2009, 373 (23-24) : 2091 - 2096
  • [22] Superconductivity in crystals with spin-orbit coupling
    Samokhin, K. V.
    MODERN PHYSICS LETTERS B, 2020, 34 (33):
  • [23] Spin-orbit coupling in fluorinated graphene
    Irmer, Susanne
    Frank, Tobias
    Putz, Sebastian
    Gmitra, Martin
    Kochan, Denis
    Fabian, Jaroslav
    PHYSICAL REVIEW B, 2015, 91 (11):
  • [24] Bismuth Doping of CdTe: The Effect of Spin-Orbit Coupling
    Alberto Rios-Gonzalez, Juan
    Menendez-Proupin, Eduardo
    Pena, Juan Luis
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2020, 257 (09):
  • [25] The impact of spin-orbit coupling and the strain effect on monolayer tin carbide
    Islam, Md. Rasidul
    Wang, Zhijie
    Qu, Shengchun
    Liu, Kong
    Wang, Zhanguo
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2021, 20 (01) : 151 - 160
  • [26] Spin-Orbit Coupling in Phosphorescent Iridium(III) Complexes
    Smith, Arthur R. G.
    Burn, Paul L.
    Powell, Ben J.
    CHEMPHYSCHEM, 2011, 12 (13) : 2428 - 2437
  • [27] Intersubband spin-orbit coupling and spin splitting in symmetric quantum wells
    Kyrychenko, F. V.
    Ullrich, C. A.
    D'Amico, I.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (08) : 944 - 948
  • [28] Spin-orbit coupling and spin current in mesoscopic devices
    Xing YanXia
    Sun QingFeng
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2013, 56 (01) : 196 - 206
  • [29] Thermoelectric performance of line-centered honeycomb structures under the influence of chemical potential, strain, and spin-orbit coupling
    Jamshidipour, Mahtab
    Abdi, Mona
    Astinchap, Bandar
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2025, 205
  • [30] Spin-orbit coupling effects on electronic structures in stanene nanoribbons
    Xiong, Wenqi
    Xia, Congxin
    Peng, Yuting
    Du, Juan
    Wang, Tianxing
    Zhang, Jicai
    Jia, Yu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (09) : 6534 - 6540