Cyto-Mine: An Integrated, Picodroplet System for High-Throughput Single-Cell Analysis, Sorting, Dispensing, and Monoclonality Assurance

被引:41
作者
Josephides, Dimitris [1 ]
Davoli, Serena [1 ]
Whitley, William [1 ]
Ruis, Raphael [1 ]
Salter, Robert [1 ]
Gokkaya, Sinan [1 ]
Vallet, Maeva [1 ]
Matthews, Darren [1 ]
Benazzi, Giuseppe [1 ]
Shvets, Elena [1 ]
Gesellchen, Frank [1 ]
Geere, Drew [1 ]
Liu, Xin [1 ]
Li, Xin [1 ]
Mackworth, Benedict [1 ]
Young, William [1 ]
Owen, Zachary [1 ]
Smith, Clive [1 ]
Starkie, Dale [2 ]
White, James [2 ]
Sweeney, Bernie [2 ]
Hinchliffe, Matthew [2 ]
Tickle, Simon [2 ]
Lightwood, Daniel J. [2 ]
Rehak, Marian [1 ]
Craig, Frank F. [1 ]
Holmes, David [1 ]
机构
[1] Sphere Fluid Ltd, Babraham Res Campus,Jonas Webb Bldg, Cambridge CB22 3AT, England
[2] UCB, Slough, Berks, England
来源
SLAS TECHNOLOGY | 2020年 / 25卷 / 02期
关键词
microfluidics; microtechnology; picodroplet; HTS; high-throughput screening; automated biology; high producer identification; monoclonality; DROPLET; MICROFLUIDICS; CLONING;
D O I
10.1177/2472630319892571
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The primary goal of bioprocess cell line development is to obtain high product yields from robustly growing and well-defined clonal cell lines in timelines measured in weeks rather than months. Likewise, high-throughput screening of B cells and hybridomas is required for most cell line engineering workflows. A substantial bottleneck in these processes is detecting and isolating rare clonal cells with the required characteristics. Traditionally, this was achieved by the resource-intensive method of limiting dilution cloning, and more recently aided by semiautomated technologies such as cell sorting (e.g., fluorescence-activated cell sorting) and colony picking. In this paper we report on our novel Cyto-Mine Single Cell Analysis and Monoclonality Assurance System, which overcomes the limitations of current technologies by screening hundreds of thousands of individual cells for secreted target proteins, and then isolating and dispensing the highest producers into microtiter plate wells (MTP). The Cyto-Mine system performs this workflow using a fully integrated, microfluidic Cyto-Cartridge. Critically, all reagents and Cyto-Cartridges used are animal component-free (ACF) and sterile, thus allowing fast, robust, and safe isolation of desired cells.
引用
收藏
页码:177 / 189
页数:13
相关论文
共 20 条
[1]   Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices [J].
Ahn, K ;
Kerbage, C ;
Hunt, TP ;
Westervelt, RM ;
Link, DR ;
Weitz, DA .
APPLIED PHYSICS LETTERS, 2006, 88 (02) :1-3
[2]   Droplet microfluidic technology for single-cell high-throughput screening [J].
Brouzes, Eric ;
Medkova, Martina ;
Savenelli, Neal ;
Marran, Dave ;
Twardowski, Mariusz ;
Hutchison, J. Brian ;
Rothberg, Jonathan M. ;
Link, Darren R. ;
Perrimon, Norbert ;
Samuels, Michael L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (34) :14195-14200
[3]   Microfluidic methods for generating continuous droplet streams [J].
Christopher, G. F. ;
Anna, S. L. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (19) :R319-R336
[4]   The rapid generation of recombinant functional monoclonal antibodies from individual, antigen-specific bone marrow-derived plasma cells isolated using a novel fluorescence-based method [J].
Clargo, Alison M. ;
Hudson, Ashley R. ;
Ndlovu, Welcome ;
Wootton, Rebecca J. ;
Cremin, Louise A. ;
O'Dowd, Victoria L. ;
Nowosad, Carla R. ;
Starkie, Dale O. ;
Shaw, Sophie P. ;
Compson, Joanne E. ;
White, Dominic P. ;
MacKenzie, Brendon ;
Snowden, James R. ;
Newnham, Laura E. ;
Wright, Michael ;
Stephens, Paul E. ;
Griffiths, Meryn R. ;
Lawson, Alastair D. G. ;
Lightwood, Daniel J. .
MABS, 2014, 6 (01) :143-159
[5]   Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms [J].
Clausell-Tormos, Jenifer ;
Lieber, Diana ;
Baret, Jean-Christophe ;
El-Harrak, Abdeslam ;
Miller, Oliver J. ;
Frenz, Lucas ;
Blouwolff, Joshua ;
Humphry, Katherine J. ;
Koster, Sarah ;
Duan, Honey ;
Holtze, Christian ;
Weitz, David A. ;
Griffiths, Andrew D. ;
Merten, Christoph A. .
CHEMISTRY & BIOLOGY, 2008, 15 (05) :427-437
[6]  
Craig FF., 2018, Genetic Eng. Biotechnol. News, V38, P18, DOI [10.1089/gen.38.21.08, DOI 10.1089/GEN.38.21.08]
[7]   The state-of-play and future of antibody therapeutics [J].
Elgundi, Zehra ;
Reslan, Mouhamad ;
Cruz, Esteban ;
Sifniotis, Vicki ;
Kayser, Veysel .
ADVANCED DRUG DELIVERY REVIEWS, 2017, 122 :2-19
[8]   Assurance of monoclonality in one round of cloning through cell sorting for single cell deposition coupled with high resolution cell imaging [J].
Evans, Krista ;
Albanetti, Thomas ;
Venkat, Raghavan ;
Schoner, Ronald ;
Savery, James ;
Miro-Quesada, Guillermo ;
Rajan, Bhargavi ;
Groves, Christopher .
BIOTECHNOLOGY PROGRESS, 2015, 31 (05) :1172-1178
[9]   A single-step FACS sorting strategy in conjunction with fluorescent vital dye imaging efficiently assures clonality of biopharmaceutical production cell lines [J].
Fieder, Juergen ;
Schulz, Patrick ;
Gorr, Ingo ;
Bradl, Harald ;
Wenger, Till .
BIOTECHNOLOGY JOURNAL, 2017, 12 (06)
[10]   High-throughput screening of antibiotic-resistant bacteria in picodroplets [J].
Liu, X. ;
Painter, R. E. ;
Enesa, K. ;
Holmes, D. ;
Whyte, G. ;
Garlisi, C. G. ;
Monsma, F. J., Jr. ;
Rehak, M. ;
Craig, F. F. ;
Smith, C. A. .
LAB ON A CHIP, 2016, 16 (09) :1636-1643