Comment: Settle the Unsettling: An Inferential Models Perspective

被引:2
作者
Liu, Chuanhai [1 ]
Martin, Ryan [2 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[2] North Carolina State Univ, Dept Stat, Raleigh, NC USA
关键词
Belief function; efficiency; lower and upper probability; inferential models; validity;
D O I
10.1214/21-STS765B
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Here, we demonstrate that the inferential model (IM) framework, unlike the updating rules that Gong and Meng show to be unreliable, provides valid and efficient inferences/prediction while not being susceptible to sure loss. In this sense, the IM framework settles what Gong and Meng characterized as "unsettling."
引用
收藏
页码:196 / 200
页数:5
相关论文
共 11 条
[1]  
Cella L., 2020, VALIDITY CONSONANT P
[2]   The Dempster-Shafer calculus for statisticians [J].
Dempster, A. P. .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2008, 48 (02) :365-377
[3]   Judicious Judgment Meets Unsettling Updating: Dilation, Sure Loss and Simpson's Paradox [J].
Gong, Ruobin ;
Meng, Xiao-Li .
STATISTICAL SCIENCE, 2021, 36 (02) :169-190
[4]  
MARTIN R., 2016, INFERENTIAL MODELS R, V147
[5]   Prior-Free Probabilistic Prediction of Future Observations [J].
Martin, Ryan ;
Lingham, Rama T. .
TECHNOMETRICS, 2016, 58 (02) :225-235
[6]   Marginal Inferential Models: Prior-Free Probabilistic Inference on Interest Parameters [J].
Martin, Ryan ;
Liu, Chuanhai .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (512) :1621-1631
[7]   Conditional inferential models: combining information for prior-free probabilistic inference [J].
Martin, Ryan ;
Liu, Chuanhai .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) :195-217
[8]   Inferential Models: A Framework for Prior-Free Posterior Probabilistic Inference [J].
Martin, Ryan ;
Liu, Chuanhai .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (501) :301-313
[9]  
Shafer G., 1976, MATH THEORY EVIDENCE, V42, DOI [DOI 10.1080/00401706.1978.10489628, 10.1515/9780691214696]
[10]  
VOVK V., 2005, ALGORITHMIC LEARNING, DOI DOI 10.1007/B106715