A proof of the Grunbaum conjecture

被引:26
作者
Chalmers, Bruce L. [1 ]
Lewicki, Grzegorz [2 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[2] Jagiellonian Univ, Inst Math, PL-30348 Krakow, Poland
关键词
absolute projection constant; minimal projection; LARGE PROJECTION CONSTANTS; SYMMETRIC-SPACES; NORMS;
D O I
10.4064/sm200-2-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be an n-dimensional real Banach space and let lambda(V) denote its absolute projection constant. For any N is an element of N with N >= n define lambda(N)(n) = sup{lambda(V) : dim(V) = n, V subset of l(infinity)((N))}, lambda(n) = sup{lambda(V) : dim(V) = n}. A well-known Grunbaum conjecture [Trans. Amer. Math. Soc. 95 (1960)] says that lambda(2) = 4/3. Konig and Tomczak-Jaegermann [J. Funct. Anal. 119 (1994)] made an attempt to prove this conjecture. Unfortunately, their Proposition 3.1, used in the proof, is incorrect. In this paper a complete proof of the Griinbaum conjecture is presented.
引用
收藏
页码:103 / 129
页数:27
相关论文
共 13 条
[1]  
[Anonymous], 1971, Mathematical Notes
[2]   Symmetric spaces with maximal projection constants [J].
Chalmers, BL ;
Lewicki, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (01) :1-22
[3]  
Chalmers BL, 1999, STUD MATH, V134, P119
[4]   Extension constants of unconditional two-dimensional operators [J].
Chalmers, BL ;
Shekhtman, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 240 :173-182
[5]   Three-dimensional subspace of l∞(5) with maximal projection constant [J].
Chalmers, Bruce L. ;
Lewicki, Grzegorz .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (02) :553-592
[6]  
GRUNBAUM B, 1960, T AM MATH SOC, V95, P451
[7]   SPACES WITH LARGE PROJECTION CONSTANTS [J].
KONIG, H .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 50 (03) :181-188
[8]  
KONIG H, 1983, STUD MATH, V75, P341
[9]   BOUNDS FOR PROJECTION CONSTANTS AND 1-SUMMING NORMS [J].
KONIG, H ;
TOMCZAKJAEGERMANN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 320 (02) :799-823
[10]  
König H, 1999, J REINE ANGEW MATH, V511, P1