Machine learning for real-time aggregated prediction of hospital admission for emergency patients

被引:34
作者
King, Zella [1 ,2 ]
Farrington, Joseph [2 ]
Utley, Martin [1 ]
Kung, Enoch [1 ]
Elkhodair, Samer [3 ]
Harris, Steve [3 ]
Sekula, Richard [3 ]
Gillham, Jonathan [3 ]
Li, Kezhi [2 ]
Crowe, Sonya [1 ]
机构
[1] UCL, Clin Operat Res Unit, 4 Taviton St, London WC1H 0BT, England
[2] UCL, Inst Hlth Informat, 222 Euston Rd, London NW1 2DA, England
[3] Univ Coll London Hosp NHS Fdn Trust, 250 Euston Rd, London NW1 2PG, England
基金
美国国家卫生研究院; 英国惠康基金;
关键词
DEMAND; MODEL;
D O I
10.1038/s41746-022-00649-y
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Machine learning for hospital operations is under-studied. We present a prediction pipeline that uses live electronic health-records for patients in a UK teaching hospital's emergency department (ED) to generate short-term, probabilistic forecasts of emergency admissions. A set of XGBoost classifiers applied to 109,465 ED visits yielded AUROCs from 0.82 to 0.90 depending on elapsed visit-time at the point of prediction. Patient-level probabilities of admission were aggregated to forecast the number of admissions among current ED patients and, incorporating patients yet to arrive, total emergency admissions within specified time-windows. The pipeline gave a mean absolute error (MAE) of 4.0 admissions (mean percentage error of 17%) versus 6.5 (32%) for a benchmark metric. Models developed with 104,504 later visits during the Covid-19 pandemic gave AUROCs of 0.68-0.90 and MAE of 4.2 (30%) versus a 4.9 (33%) benchmark. We discuss how we surmounted challenges of designing and implementing models for real-time use, including temporal framing, data preparation, and changing operational conditions.
引用
收藏
页数:12
相关论文
共 43 条
[21]   The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards [J].
Lauritsen, Simon Meyer ;
Thiesson, Bo ;
Jorgensen, Marianne Johansson ;
Riis, Anders Hammerich ;
Espelund, Ulrick Skipper ;
Weile, Jesper Bo ;
Lange, Jeppe .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[22]   Developing a delivery science for artificial intelligence in healthcare [J].
Li, Ron C. ;
Asch, Steven M. ;
Shah, Nigam H. .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[23]   Early prediction of hospital admission for emergency department patients: a comparison between patients younger or older than 70 years [J].
Lucke, Jacinta A. ;
de Gelder, Jelle ;
Clarijs, Fleur ;
Heringhaus, Christian ;
de Craen, Anton J. M. ;
Fogteloo, Anne J. ;
Blauw, Gerard J. ;
de Groot, Bas ;
Mooijaart, Simon P. .
EMERGENCY MEDICINE JOURNAL, 2018, 35 (01) :18-27
[24]   Emergency department and hospital crowding: causes, consequences, and cures [J].
McKenna, Peter ;
Heslin, Samita M. ;
Viccellio, Peter ;
Mallon, William K. ;
Hernandez, Cristina ;
Morley, Eric J. .
CLINICAL AND EXPERIMENTAL EMERGENCY MEDICINE, 2019, 6 (03) :189-195
[25]   Machine learning for real-time prediction of complications in critical care: a retrospective study [J].
Meyer, Alexander ;
Zverinski, Dina ;
Pfahringer, Boris ;
Kempfert, Joerg ;
Kuehne, Titus ;
Sundermann, Simon H. ;
Stamm, Christof ;
Hofmann, Thomas ;
Falk, Volkmar ;
Eickhoff, Carsten .
LANCET RESPIRATORY MEDICINE, 2018, 6 (12) :905-914
[26]  
Nestor B, 2019, Arxiv, DOI arXiv:1908.00690
[27]  
Pagel C, 2017, OPER RES HEALTH CARE, V15, P19, DOI 10.1016/j.orhc.2017.08.003
[28]   Older medical outliers on surgical wards: impact on 6-month outcomes [J].
Patry, Claire ;
Perozziello, Anne ;
Pardineille, Clio ;
Aubert, Christiane ;
de Malglaive, Pauline ;
Choquet, Christophe ;
Raynaud-Simon, Agathe ;
Sanchez, Manuel .
EMERGENCY MEDICINE JOURNAL, 2022, 39 (03) :181-+
[29]   Generalizability of a Simple Approach for Predicting Hospital Admission From an Emergency Department [J].
Peck, Jordan S. ;
Gaehde, Stephan A. ;
Nightingale, Deborah J. ;
Gelman, David Y. ;
Huckins, David S. ;
Lemons, Mark F. ;
Dickson, Eric W. ;
Benneyan, James C. .
ACADEMIC EMERGENCY MEDICINE, 2013, 20 (11) :1156-1163
[30]   Predicting Emergency Department Inpatient Admissions to Improve Same-day Patient Flow [J].
Peck, Jordan S. ;
Benneyan, James C. ;
Nightingale, Deborah J. ;
Gaehde, Stephan A. .
ACADEMIC EMERGENCY MEDICINE, 2012, 19 (09) :E1045-E1054