Matlis Duality and Finiteness Properties of Generalized Local Cohomology Modules

被引:2
作者
Saremi, Hero [1 ,2 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Tehran, Iran
[2] Islamic Azad Univ Sanandaj Branch, Dept Math, Sanandaj, Iran
关键词
generalized local cohomology module; associated primes; co-Cohen-Macaulay; ARTINIAN-MODULES; PRIMES; DIMENSION; HOMOLOGY; RINGS;
D O I
10.1142/S1005386710000611
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a be an ideal of a commutative Noetherian local ring (R, m) and M, N be two finitely generated R-modules such that M is of finite projective dimension n. Let t be a positive integer. We show that if there exists a regular sequence x(1),... ,x(t) is an element of a with aN not equal N and the i-th local cohomology module H-a(i)(N) of N with respect to is zero for all i > t, then , H-a(t)(M, D(H-a(t)(N))) congruent to D(M circle times(R) N), where D(-) := Hom(R)(-, E). Also, we prove that if N is a Cohen-Macaulay R-module of dimension d, then the generalized local cohomology module H-m(n+d)(M,N) is co-Cohen-Macaulay of Noetherian dimension d. Finally, with an elementary proof, we show that Supp(R)(H-a(n+d-1)(M, N)) is finite.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 23 条
[1]   On the finiteness properties of the generalized local cohomology modules [J].
Asadollahi, J ;
Khashyarmanesh, K ;
Salarian, S .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (02) :859-867
[2]  
Bijan-Zadeh M. A., 1980, Glasgow Math. J., V21, P173, DOI 10.1017/S0017089500004158
[3]  
Brodmann M. P., 1998, LOCAL COHOMOLOGY ALG
[4]   On the vanishing and the finiteness of supports of generalized local cohomology modules [J].
Cuong, Nguyen Tu ;
Van Hoang, Nguyen .
MANUSCRIPTA MATHEMATICA, 2008, 126 (01) :59-72
[5]  
Cuong NT, 2001, MATH PROC CAMBRIDGE, V131, P61
[6]  
Herzog J., 1970, Komplexe, Auflosungen und Dualitat in der lokalen Algebra, Habilitationsschrift
[7]  
HUNEKE C, 1992, RES NOT MAT, V2, P93
[8]   An example of an infinite set of associated primes of a local cohomology module [J].
Katzman, M .
JOURNAL OF ALGEBRA, 2002, 252 (01) :161-166
[9]   On the associated primes of local cohomology modules [J].
Khashyarmanesh, K ;
Salarian, S .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (12) :6191-6198
[10]   DIMENSION AND LENGTH FOR ARTINIAN-MODULES [J].
KIRBY, D .
QUARTERLY JOURNAL OF MATHEMATICS, 1990, 41 (164) :419-429