Nonlinear obstacle problems with double phase in the borderline case

被引:4
作者
Byun, Sun-Sig [1 ,2 ]
Cho, Yumi [1 ]
Oh, Jehan [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
BMO coefficient; Calderon-Zygmund estimate; double phase problem; obstacle problem; Reifenberg flat domain; ELLIPTIC-EQUATIONS; REGULARITY; GRADIENT; MINIMIZERS; FUNCTIONALS; INTEGRALS; EXISTENCE; CALCULUS; THEOREM; SPACES;
D O I
10.1002/mana.201800277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a double phase problem with an irregular obstacle. The energy functional under consideration is characterized by the fact that both ellipticity and growth switch between a type of polynomial and a type of logarithm, which can be regarded as a borderline case of the double phase functional with (p,q)-growth. We obtain an optimal global Calderon-Zygmund type estimate for the obstacle problem with double phase in the borderline case.
引用
收藏
页码:651 / 669
页数:19
相关论文
共 50 条
[41]   Nonlinear parabolic double phase variable exponent systems with applications in image noise removal [J].
Charkaoui, Abderrahim ;
Ben-Loghfyry, Anouar ;
Zeng, Shengda .
APPLIED MATHEMATICAL MODELLING, 2024, 132 :495-530
[42]   Irregular Double Obstacle Problems with Orlicz Growth [J].
Byun, Sun-Sig ;
Liang, Shuang ;
Ok, Jihoon .
JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) :1965-1984
[43]   Existence of weak solutions to borderline double-phase problems with logarithmic convection terms [J].
Tran, Minh-Phuong ;
Nguyen, Thanh-Nhan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (01)
[44]   Symmetry and monotonicity of singular solutions of double phase problems [J].
Biagi, Stefano ;
Esposito, Francesco ;
Vecchi, Eugenio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 :435-463
[45]   Concentration of solutions for non-autonomous double-phase problems with lack of compactness [J].
Zhang, Weiqiang ;
Zuo, Jiabin ;
Radulescu, Vicentiu D. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04)
[46]   Existence of solutions for double phase obstacle problems with multivalued convection term [J].
Zeng, Shengda ;
Gasinski, Leszek ;
Winkert, Patrick ;
Bai, Yunru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
[47]   Double phase problems with variable growth [J].
Cencelj, Matija ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 :270-287
[48]   Regularity for Double Phase Variational Problems [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :443-496
[49]   On a class of critical double phase problems [J].
Farkas, Csaba ;
Fiscella, Alessio ;
Winkert, Patrick .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (02)
[50]   An inverse problem for a double phase implicit obstacle problem with multivalued terms [J].
Zeng, Shengda ;
Bai, Yunru ;
Radulescu, Vicentiu D. ;
Winkert, Patrick .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29