Nonlinear obstacle problems with double phase in the borderline case

被引:4
作者
Byun, Sun-Sig [1 ,2 ]
Cho, Yumi [1 ]
Oh, Jehan [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
BMO coefficient; Calderon-Zygmund estimate; double phase problem; obstacle problem; Reifenberg flat domain; ELLIPTIC-EQUATIONS; REGULARITY; GRADIENT; MINIMIZERS; FUNCTIONALS; INTEGRALS; EXISTENCE; CALCULUS; THEOREM; SPACES;
D O I
10.1002/mana.201800277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a double phase problem with an irregular obstacle. The energy functional under consideration is characterized by the fact that both ellipticity and growth switch between a type of polynomial and a type of logarithm, which can be regarded as a borderline case of the double phase functional with (p,q)-growth. We obtain an optimal global Calderon-Zygmund type estimate for the obstacle problem with double phase in the borderline case.
引用
收藏
页码:651 / 669
页数:19
相关论文
共 50 条
[31]   Finite element solutions for variable exponents double phase problems [J].
El Yazidi, Youness ;
Charkaoui, Abderrahim ;
Zeng, Shengda .
NUMERICAL ALGORITHMS, 2025,
[32]   Double phase anisotropic variational problems involving critical growth [J].
Ho, Ky ;
Kim, Yun-Ho ;
Zhang, Chao .
ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
[33]   Singular double phase problems with convection [J].
Papageorgiou, Nikolaos S. ;
Peng, Zijia .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81
[34]   The double phase problems on lattice graphs [J].
He, Zhentao ;
Ji, Chao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 438
[35]   Double obstacle problems of nonlinear elliptic equations with log-BMO matrix weights [J].
Byun, Sun-Sig ;
Yang, Rui .
NONLINEARITY, 2025, 38 (04)
[36]   Multiplicity results for double phase problems involving a new type of critical growth [J].
Ha, Hoang Hai ;
Ho, Ky .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
[37]   DOUBLE PHASE OBSTACLE PROBLEMS WITH VARIABLE EXPONENT [J].
Zeng, Shengda ;
Radulescu, Vicentiu D. ;
Winkert, Patrick .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2022, 27 (9-10) :611-645
[38]   Besov regularity for a class of elliptic obstacle problems with double-phase Orlicz growth [J].
Zhao, Lijing ;
Zheng, Shenzhou .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (01)
[39]   Existence and regularity for nonlinear parabolic double obstacle problems [J].
Byun, Sun-Sig ;
Ryu, Seungjin .
NONLINEARITY, 2023, 36 (09) :4785-4809
[40]   Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting [J].
Fiscella, Alessio ;
Marino, Greta ;
Pinamonti, Andrea ;
Verzellesi, Simone .
REVISTA MATEMATICA COMPLUTENSE, 2024, 37 (01) :205-236