Nonlinear obstacle problems with double phase in the borderline case

被引:4
作者
Byun, Sun-Sig [1 ,2 ]
Cho, Yumi [1 ]
Oh, Jehan [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
BMO coefficient; Calderon-Zygmund estimate; double phase problem; obstacle problem; Reifenberg flat domain; ELLIPTIC-EQUATIONS; REGULARITY; GRADIENT; MINIMIZERS; FUNCTIONALS; INTEGRALS; EXISTENCE; CALCULUS; THEOREM; SPACES;
D O I
10.1002/mana.201800277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a double phase problem with an irregular obstacle. The energy functional under consideration is characterized by the fact that both ellipticity and growth switch between a type of polynomial and a type of logarithm, which can be regarded as a borderline case of the double phase functional with (p,q)-growth. We obtain an optimal global Calderon-Zygmund type estimate for the obstacle problem with double phase in the borderline case.
引用
收藏
页码:651 / 669
页数:19
相关论文
共 50 条
[21]   Regularity for Asymptotically Regular Elliptic Double Obstacle Problems of Multi-phase [J].
Feng, Jiangshan ;
Liang, Shuang .
RESULTS IN MATHEMATICS, 2023, 78 (06)
[22]   Regularity results for a class of obstacle problems with nonstandard growth [J].
Ok, Jihoon .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) :957-979
[23]   Nonlinear gradient estimates for elliptic double obstacle problems with measure data [J].
Byun, Sun-Sig ;
Cho, Yumi ;
Park, Jung-Tae .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 293 :249-281
[24]   Gradient estimates for nonlinear elliptic double obstacle problems [J].
Byun, Sun-Sig ;
Ryu, Seungjin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194
[25]   On logarithmic double phase problems [J].
Arora, Rakesh ;
Crespo-Blanco, Angel ;
Winkert, Patrick .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 433
[26]   Singular Finsler Double Phase Problems with Nonlinear Boundary Condition [J].
Farkas, Csaba ;
Fiscella, Alessio ;
Winkert, Patrick .
ADVANCED NONLINEAR STUDIES, 2021, 21 (04) :809-825
[27]   Double phase variable exponent problems with nonlinear matrices diffusion [J].
Charkaoui, Abderrahim ;
Pan, Jinlan .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2025, 54 (02) :445-456
[28]   Gradient estimates for the double phase problems in the whole space [J].
Zhang, Bei-Lei ;
Ge, Bin .
ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (12) :7349-7364
[29]   Higher differentiability results in the scale of Besov Spaces to a class of double-phase obstacle problems [J].
Grimaldi, Antonio Giuseppe ;
Ipocoana, Erica .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
[30]   Regularity for double phase problems under additional integrability assumptions [J].
Ok, Jihoon .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194