Nonlinear obstacle problems with double phase in the borderline case

被引:4
作者
Byun, Sun-Sig [1 ,2 ]
Cho, Yumi [1 ]
Oh, Jehan [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
BMO coefficient; Calderon-Zygmund estimate; double phase problem; obstacle problem; Reifenberg flat domain; ELLIPTIC-EQUATIONS; REGULARITY; GRADIENT; MINIMIZERS; FUNCTIONALS; INTEGRALS; EXISTENCE; CALCULUS; THEOREM; SPACES;
D O I
10.1002/mana.201800277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a double phase problem with an irregular obstacle. The energy functional under consideration is characterized by the fact that both ellipticity and growth switch between a type of polynomial and a type of logarithm, which can be regarded as a borderline case of the double phase functional with (p,q)-growth. We obtain an optimal global Calderon-Zygmund type estimate for the obstacle problem with double phase in the borderline case.
引用
收藏
页码:651 / 669
页数:19
相关论文
共 57 条
[51]   Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles [J].
Scheven, Christoph .
MANUSCRIPTA MATHEMATICA, 2015, 146 (1-2) :7-63
[52]  
SHIKOV VV, 1995, RUSS J MATH PHYS, V3, P249
[53]  
SidiElVally M., 2013, ADV DYN SYST APPL, V8, P115
[54]  
Toro T., 1997, NOTICES AM MATH SOC, V44, P1087
[55]  
ZHIKOV VV, 1986, MATH USSR IZV+, V50, P33
[56]  
Zhikov VV, 1997, RUSS J MATH PHYS, V5, P105
[57]  
Zhikov VV., 2012, HOMOGENIZATION DIFFE