Nonlinear obstacle problems with double phase in the borderline case

被引:4
作者
Byun, Sun-Sig [1 ,2 ]
Cho, Yumi [1 ]
Oh, Jehan [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
BMO coefficient; Calderon-Zygmund estimate; double phase problem; obstacle problem; Reifenberg flat domain; ELLIPTIC-EQUATIONS; REGULARITY; GRADIENT; MINIMIZERS; FUNCTIONALS; INTEGRALS; EXISTENCE; CALCULUS; THEOREM; SPACES;
D O I
10.1002/mana.201800277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a double phase problem with an irregular obstacle. The energy functional under consideration is characterized by the fact that both ellipticity and growth switch between a type of polynomial and a type of logarithm, which can be regarded as a borderline case of the double phase functional with (p,q)-growth. We obtain an optimal global Calderon-Zygmund type estimate for the obstacle problem with double phase in the borderline case.
引用
收藏
页码:651 / 669
页数:19
相关论文
共 57 条
[1]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[2]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[3]  
[Anonymous], PURE APPL MATH N Y
[4]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[5]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[6]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[7]   Variational inequalities in Musielak-Orlicz-Sobolev spaces [J].
Benkirane, A. ;
El Vally, M. Sidi .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (05) :787-811
[8]   C1,α-solutions to non-autonomous anisotropic variational problems [J].
Bildhauer, M ;
Fuchs, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (03) :309-340
[9]  
Bildhauer M, 2001, CALC VAR PARTIAL DIF, V13, P537, DOI 10.1007/s005260100090
[10]   Degenerate problems with irregular obstacles [J].
Boegelein, Verena ;
Duzaar, Frank ;
Mingione, Giuseppe .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 650 :107-160