Nonlinear obstacle problems with double phase in the borderline case

被引:4
|
作者
Byun, Sun-Sig [1 ,2 ]
Cho, Yumi [1 ]
Oh, Jehan [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
BMO coefficient; Calderon-Zygmund estimate; double phase problem; obstacle problem; Reifenberg flat domain; ELLIPTIC-EQUATIONS; REGULARITY; GRADIENT; MINIMIZERS; FUNCTIONALS; INTEGRALS; EXISTENCE; CALCULUS; THEOREM; SPACES;
D O I
10.1002/mana.201800277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a double phase problem with an irregular obstacle. The energy functional under consideration is characterized by the fact that both ellipticity and growth switch between a type of polynomial and a type of logarithm, which can be regarded as a borderline case of the double phase functional with (p,q)-growth. We obtain an optimal global Calderon-Zygmund type estimate for the obstacle problem with double phase in the borderline case.
引用
收藏
页码:651 / 669
页数:19
相关论文
共 50 条
  • [1] Irregular obstacle problems for Orlicz double phase
    Baasandorj, Sumiya
    Byun, Sun-Sig
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [2] Global gradient estimates for the borderline case of double phase problems with BMO coefficients in nonsmooth domains
    Byun, Sun-Sig
    Oh, Jehan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (02) : 1643 - 1693
  • [3] NONLOCAL DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS WITH MULTIVALUED BOUNDARY CONDITIONS
    Zeng, Shengda
    Radulescu, Vicentiu D.
    Winkert, Patrick
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 877 - 912
  • [4] Identification of discontinuous parameters in double phase obstacle problems
    Zeng, Shengda
    Bai, Yunru
    Winkert, Patrick
    Yao, Jen-Chih
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) : 1 - 22
  • [5] Existence results for double phase obstacle problems with variable exponents
    Benslimane, Omar
    Aberqi, Ahmed
    Bennouna, Jaouad
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2021, 7 (02) : 875 - 890
  • [6] NONLINEAR GRADIENT ESTIMATES FOR DOUBLE PHASE ELLIPTIC PROBLEMS WITH IRREGULAR DOUBLE OBSTACLES
    Byun, Sun-Sig
    Liang, Shuang
    Zheng, Shenzhou
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (09) : 3839 - 3854
  • [7] W1,γ(.)-estimate to non-uniformly elliptic obstacle problems with borderline growth
    Zhang, Xiaolin
    Zheng, Shenzhou
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (10) : 1833 - 1856
  • [8] Gradient estimates for double phase problems with irregular obstacles
    Byun, Sun-Sig
    Cho, Yumi
    Oh, Jehan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 169 - 185
  • [9] Global gradient estimates for a borderline case of double phase problems with measure data
    Byun, Sun-Sig
    Cho, Namkyeong
    Youn, Yeonghun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
  • [10] Calderon-Zygmund estimates for a class of obstacle problems with nonstandard growth
    Ok, Jihoon
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (04):