Anomalous transport of a tracer on percolating clusters

被引:32
|
作者
Spanner, Markus [1 ]
Hoefling, Felix [2 ,3 ]
Schroeder-Turk, Gerd E. [1 ]
Mecke, Klaus [1 ]
Franosch, Thomas [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany
[2] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, Inst Theoret & Angew Phys, D-70569 Stuttgart, Germany
关键词
VELOCITY AUTOCORRELATION FUNCTION; SLOW DYNAMICS; DIFFUSION; MEMBRANE; CELLS; GLASS;
D O I
10.1088/0953-8984/23/23/234120
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We investigate the dynamics of a single tracer exploring a course of fixed obstacles in the vicinity of the percolation transition for particles confined to the infinite cluster. The mean-square displacement displays anomalous transport, which extends to infinite times precisely at the critical obstacle density. The slowing down of the diffusion coefficient exhibits power-law behavior for densities close to the critical point and we show that the mean-square displacement fulfills a scaling hypothesis. Furthermore, we calculate the dynamic conductivity as a response to an alternating electric field. Last, we discuss the non-Gaussian parameter as an indicator for heterogeneous dynamics.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] ANOMALOUS DIFFUSION ON PERCOLATING CLUSTERS
    GEFEN, Y
    AHARONY, A
    ALEXANDER, S
    PHYSICAL REVIEW LETTERS, 1983, 50 (01) : 77 - 80
  • [3] ANOMALOUS TRANSPORT IN LATTICE AND CONTINUUM PERCOLATING SYSTEMS
    YU, KW
    PHYSICAL REVIEW B, 1986, 33 (11): : 7748 - 7752
  • [4] Anomalous tracer transport in the stochastic advection model
    Dranikov, IL
    Kondratenko, PS
    Matveev, LV
    DOKLADY PHYSICS, 2004, 49 (01) : 22 - 24
  • [5] Anomalous tracer transport in the stochastic advection model
    I. L. Dranikov
    P. S. Kondratenko
    L. V. Matveev
    Doklady Physics, 2004, 49 : 22 - 24
  • [6] DIFFUSION ON PERCOLATING CLUSTERS
    HARRIS, AB
    MEIR, Y
    AHARONY, A
    PHYSICAL REVIEW B, 1987, 36 (16): : 8752 - 8764
  • [8] Computer-simulation study of anomalous diffusion on percolating clusters near to the critical point
    Barta, S.
    Dieska, P.
    Physica A: Statistical and Theoretical Physics, 1995, 215 (03):
  • [9] VALENCES OF SITES IN PERCOLATING AND NON-PERCOLATING CLUSTERS
    WHITTINGTON, SG
    MIDDLEMISS, KM
    TORRIE, GM
    GAUNT, DS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (12): : 3707 - 3712
  • [10] Anomalous diffusion on the percolating networks
    Liu, De
    Li, Houqiang
    Chang, Fuxuan
    Lin, Libin
    Communications in Nonlinear Science and Numerical Simulation, 1997, 2 (04): : 220 - 225