On total colorings of 1-planar graphs

被引:14
作者
Zhang, Xin [1 ]
Hou, Jianfeng [2 ]
Liu, Guizhen [3 ]
机构
[1] Xidian Univ, Dept Math, Xian 710071, Peoples R China
[2] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
[3] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
1-Planar graph; Total coloring; Discharging method; TOTAL CHROMATIC NUMBER; EDGE COLORINGS; PLANAR GRAPHS; CHOOSABILITY;
D O I
10.1007/s10878-013-9641-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A graph is -planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, we confirm the total-coloring conjecture for 1-planar graphs with maximum degree at least 13.
引用
收藏
页码:160 / 173
页数:14
相关论文
共 25 条
[1]   Coloring vertices and faces of locally planar graphs [J].
Albertson, Michael O. ;
Mohar, Bojan .
GRAPHS AND COMBINATORICS, 2006, 22 (03) :289-295
[2]  
[Anonymous], 1968, USPEKHIMAT NAUK
[3]  
Behzad M., 1965, Graphs and their chromatic numbers
[4]  
Bondy J. A., 2008, Graph Theory with Applications
[5]  
Borodin O. V., 1984, DISKRET ANAL, V41, P12
[6]  
BORODIN OV, 1989, J REINE ANGEW MATH, V394, P180
[7]   Acyclic colouring of 1-planar graphs [J].
Borodin, OV ;
Kostochka, AV ;
Raspaud, A ;
Sopena, E .
DISCRETE APPLIED MATHEMATICS, 2001, 114 (1-3) :29-41
[8]   A NEW PROOF OF THE 6 COLOR THEOREM [J].
BORODIN, OV .
JOURNAL OF GRAPH THEORY, 1995, 19 (04) :507-521
[9]   TOTAL COLORING OF A MULTI-GRAPH WITH MAXIMAL DEGREE-4 [J].
KOSTOCHKA, AV .
DISCRETE MATHEMATICS, 1977, 17 (02) :161-163
[10]   The total chromatic number of any multigraph with maximum degree five is at most seven [J].
Kostochka, AV .
DISCRETE MATHEMATICS, 1996, 162 (1-3) :199-214