Intratumor graph neural network recovers hidden prognostic value of multi-biomarker spatial heterogeneity

被引:18
作者
Qiu, Lida [1 ,2 ]
Kang, Deyong [3 ]
Wang, Chuan [4 ]
Guo, Wenhui [4 ]
Fu, Fangmeng [4 ]
Wu, Qingxiang [1 ]
Xi, Gangqin [1 ]
He, Jiajia [1 ]
Zheng, Liqin [1 ]
Zhang, Qingyuan [5 ]
Liao, Xiaoxia [6 ]
Li, Lianhuang [1 ]
Chen, Jianxin [1 ]
Tu, Haohua [7 ,8 ]
机构
[1] Fujian Normal Univ, Key Lab OptoElect Sci & Technol Med, Fujian Prov Key Lab Photon Technol, Minist Educ, Fuzhou 350007, Peoples R China
[2] Minjiang Univ, Coll Phys & Elect Informat Engn, Fuzhou 350108, Peoples R China
[3] Fujian Med Univ Union Hosp, Dept Pathol, Fuzhou 350001, Peoples R China
[4] Fujian Med Univ Union Hosp, Dept Breast Surg, Fuzhou 350001, Peoples R China
[5] Harbin Med Univ Canc Hosp, Dept Med Oncol, Harbin 150081, Peoples R China
[6] Univ Illinois, Natl Ctr Supercomputing Applicat, Urbana, IL 61801 USA
[7] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[8] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
BREAST-CANCER; TUMOR HETEROGENEITY; RISK;
D O I
10.1038/s41467-022-31771-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biomarkers are indispensable for precision medicine. However, focused single-biomarker development using human tissue has been complicated by sample spatial heterogeneity. To address this challenge, we tested a representation of primary tumor that synergistically integrated multiple in situ biomarkers of extracellular matrix from multiple sampling regions into an intratumor graph neural network. Surprisingly, the differential prognostic value of this computational model over its conventional non-graph counterpart approximated that of combined routine prognostic biomarkers (tumor size, nodal status, histologic grade, molecular subtype, etc.) for 995 breast cancer patients under a retrospective study. This large prognostic value, originated from implicit but interpretable regional interactions among the graphically integrated in situ biomarkers, would otherwise be lost if they were separately developed into single conventional (spatially homogenized) biomarkers. Our study demonstrates an alternative route to cancer prognosis by taping the regional interactions among existing biomarkers rather than developing novel biomarkers. Cancer prognosis using multiregion sampling is costly and not completely reliable due to the required biomarker homogenisation step. Here, the authors develop an intratumor graph neural network for prognosis in multiregion cancer samples based on in situ biomarkers and gene expression that does not need homogenisation.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Assessing reliability of intra-tumor heterogeneity estimates from single sample whole exome sequencing data [J].
Abecassis, Judith ;
Hamy, Anne-Sophie ;
Laurent, Cecile ;
Sadacca, Benjamin ;
Bonsang-Kitzis, Helene ;
Reyal, Fabien ;
Vert, Jean-Philippe .
PLOS ONE, 2019, 14 (11)
[2]   Tumour Heterogeneity of Breast Cancer: From Morphology to Personalised Medicine [J].
Aleskandarany, Mohammed A. ;
Vandenberghe, Michel E. ;
Marchio, Caterina ;
Ellis, Ian O. ;
Sapino, Anna ;
Rakha, Emad A. .
PATHOBIOLOGY, 2018, 85 (1-2) :23-34
[3]   Pan-cancer analysis of the extent and consequences of intratumor heterogeneity [J].
Andor, Noemi ;
Graham, Trevor A. ;
Jansen, Marnix ;
Xia, Li C. ;
Aktipis, C. Athena ;
Petritsch, Claudia ;
Ji, Hanlee P. ;
Maley, Carlo C. .
NATURE MEDICINE, 2016, 22 (01) :105-+
[4]   Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival [J].
Beck, Andrew H. ;
Sangoi, Ankur R. ;
Leung, Samuel ;
Marinelli, Robert J. ;
Nielsen, Torsten O. ;
van de Vijver, Marc J. ;
West, Robert B. ;
van de Rijn, Matt ;
Koller, Daphne .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (108)
[5]   Tumour heterogeneity in the clinic [J].
Bedard, Philippe L. ;
Hansen, Aaron R. ;
Ratain, Mark J. ;
Siu, Lillian L. .
NATURE, 2013, 501 (7467) :355-364
[6]   Tumor-associated collagen signatures: pushing tumor boundaries [J].
Brett, Elizabeth A. ;
Sauter, Matthias A. ;
Machens, Hans-Guenther ;
Duscher, Dominik .
CANCER & METABOLISM, 2020, 8 (01)
[7]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[8]  
Cho K., 2014, P C EMP METH NAT LAN, P1724
[9]   Detection of intratumor Heterogeneity in Modern Pathology: A Multisite tumor sampling Perspective [J].
Cortes, Jesus M. ;
de Petris, Giovanni ;
Lopez, Jose I. .
FRONTIERS IN MEDICINE, 2017, 4
[10]   Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer [J].
Cox, Thomas R. ;
Erler, Janine T. .
DISEASE MODELS & MECHANISMS, 2011, 4 (02) :165-178