Smallest singular value of random matrices and geometry of random polytopes

被引:152
作者
Litvak, AE
Pajor, A
Rudelson, M
Tomczak-Jaegermann, N
机构
[1] Univ Marne la Vallee, Equipe Anal & Math Appliquees, F-77454 Marne La Vallee, France
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[3] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
random matrices; random polytopes; singular values; deviation inequalities;
D O I
10.1016/j.aim.2004.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behaviour of the smallest singular value of a rectangular random matrix, i.e., matrix whose entries are independent random variables satisfying some additional conditions. We prove a deviation inequality and show that such a matrix is a "good" isomorphism on its image. Then, we obtain asymptotically sharp estimates for volumes and other geometric parameters of random polytopes (absolutely convex hulls of rows of random matrices). All our results hold with high probability, that is, with probability exponentially (in dimension) close to 1. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:491 / 523
页数:33
相关论文
共 30 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], 2001, MATH SURVEYS MONOGRA
[3]   LIMIT OF THE SMALLEST EIGENVALUE OF A LARGE DIMENSIONAL SAMPLE COVARIANCE-MATRIX [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1993, 21 (03) :1275-1294
[4]   On 0-1 polytopes with many facets [J].
Bárány, I ;
Pór, A .
ADVANCES IN MATHEMATICS, 2001, 161 (02) :209-228
[5]   APPROXIMATION OF THE SPHERE BY POLYTOPES HAVING FEW VERTICES [J].
BARANY, I ;
FUREDI, Z .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (03) :651-659
[6]   NEW VOLUME RATIO PROPERTIES FOR CONVEX SYMMETRICAL BODIES IN RN [J].
BOURGAIN, J ;
MILMAN, VD .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :319-340
[7]   INVERTIBILITY OF LARGE SUBMATRICES WITH APPLICATIONS TO THE GEOMETRY OF BANACH-SPACES AND HARMONIC-ANALYSIS [J].
BOURGAIN, J ;
TZAFRIRI, L .
ISRAEL JOURNAL OF MATHEMATICS, 1987, 57 (02) :137-224
[8]   Deterministic and randomized polynomial-time approximation of radii [J].
Brieden, A ;
Gritzmann, P ;
Kannan, R ;
Klee, V ;
Lovász, L ;
Simonovits, M .
MATHEMATIKA, 2001, 48 (95-96) :63-105
[9]   GELFAND NUMBERS OF OPERATORS WITH VALUES IN A HILBERT-SPACE [J].
CARL, B ;
PAJOR, A .
INVENTIONES MATHEMATICAE, 1988, 94 (03) :479-504
[10]  
Davidson KR, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P317, DOI 10.1016/S1874-5849(01)80010-3