Negative differential conductivity in liquid aluminum from real-time quantum simulations

被引:21
作者
Andrade, Xavier [1 ]
Hamel, Sebastien [1 ]
Correa, Alfredo A. [1 ]
机构
[1] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA
关键词
DENSITY-FUNCTIONAL THEORY; RESISTANCE; SEMICONDUCTORS; DEVICES; TRANSITION; SOLIDS; POWER;
D O I
10.1140/epjb/e2018-90291-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The conduction of electricity in materials is usually described by Ohm's law, which is a first order approximation to a more complex and non-linear behavior. It is well known that in some semiconductors, the conductivity, the constant that relates voltage and current, changes for high enough currents. In this work we predict for the first time that a metal, liquid aluminum, exhibits negative-differential conductivity, a non-linear effect where the current decreases as the applied voltage is increased. We observe this change in the conductivity for very high current densities of the order of 10(12)-10(13) A/cm(2). Our predictions are based on a computational approach that can atomistically model, for the first time, non-linear effects in the conductivity from first principles by following in real-time the quantum dynamics of the electrons. From our simulations, we find that the change in the non-linear conductivity emerges from a competition between the current-induced accumulation of charge around the nuclei, which increases the scattering of the conduction electrons, and a decreasing ion-scattering cross-section at high currents. Our results illustrate how normal matter behaves under extreme fields that will become available from free electron lasers and other future experiments.
引用
收藏
页数:7
相关论文
共 54 条
[1]  
Allen PB, 2006, CONT CONCEPT CONDENS, P165, DOI 10.1016/S1572-0934(06)02006-3
[2]   Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems [J].
Andrade, Xavier ;
Strubbe, David ;
De Giovannini, Umberto ;
Hjorth Larsen, Ask ;
Oliveira, Micael J. T. ;
Alberdi-Rodriguez, Joseba ;
Varas, Alejandro ;
Theophilou, Iris ;
Helbig, Nicole ;
Verstraete, Matthieu J. ;
Stella, Lorenzo ;
Nogueira, Fernando ;
Aspuru-Guzik, Alan ;
Castro, Alberto ;
Marques, Miguel A. L. ;
Rubio, Angel .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (47) :31371-31396
[3]   RESISTIVITY OF LIQUID ALUMINIUM [J].
ASHCROFT, NW ;
GUILD, LJ .
PHYSICS LETTERS, 1965, 14 (01) :23-&
[4]   PHYSICS Europe's X-ray laser fires up [J].
Ball, Philip .
NATURE, 2017, 548 (7669) :507-508
[5]   Free electron lasers: Present status and future challenges [J].
Barletta, W. A. ;
Bisognano, J. ;
Corlett, J. N. ;
Emma, P. ;
Huang, Z. ;
Kim, K. -J. ;
Lindberg, R. ;
Murphy, J. B. ;
Neil, G. R. ;
Nguyen, D. C. ;
Pellegrini, C. ;
Rimmer, R. A. ;
Sannibale, F. ;
Stupakov, G. ;
Walker, R. P. ;
Zholents, A. A. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 618 (1-3) :69-96
[6]   Real-space, real-time method for the dielectric function [J].
Bertsch, GF ;
Iwata, JI ;
Rubio, A ;
Yabana, K .
PHYSICAL REVIEW B, 2000, 62 (12) :7998-8002
[7]   Quantum mechanics in impact processes [J].
Born, M .
ZEITSCHRIFT FUR PHYSIK, 1926, 38 (11/12) :803-840
[9]   octopus: a tool for the application of time-dependent density functional theory [J].
Castro, Alberto ;
Appel, Heiko ;
Oliveira, Micael ;
Rozzi, Carlo A. ;
Andrade, Xavier ;
Lorenzen, Florian ;
Marques, M. A. L. ;
Gross, E. K. U. ;
Rubio, Angel .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (11) :2465-2488
[10]  
Chen F. F., 1984, INTRO PLASMA PHYS, P199