The role of gentle algebras in higher homological algebra

被引:1
作者
Haugland, Johanne [1 ]
Jacobsen, Karin M. [3 ]
Schroll, Sibylle [1 ,2 ]
机构
[1] NTNU, Dept Math Sci, N-7491 Trondheim, Norway
[2] Univ Cologne, Dept Math, D-50931 Cologne, Germany
[3] Aarhus Univ, Dept Math, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
基金
英国工程与自然科学研究理事会;
关键词
Gentle algebra; higher homological algebra; d-cluster tilting subcategory; d-abelian category; (d+2)-angulated category; REPRESENTATION-FINITE ALGEBRAS; TILTED ALGEBRAS; STABLE CATEGORIES; AUSLANDER; EXTENSIONS; MODULES;
D O I
10.1515/forum-2021-0311
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the role of gentle algebras in higher homological algebra. In the first part of the paper, we show that if the module category of a gentle algebra Lambda contains a d-cluster tilting subcategory for some d >= 2, then. is a radical square zero Nakayama algebra. This gives a complete classification of weakly d-representation finite gentle algebras. In the second part, we use a geometric model of the derived category to prove a similar result in the triangulated setup. More precisely, we show that if D-b(Lambda) contains a d-cluster tilting subcategory that is closed under [ d], then Lambda is derived equivalent to an algebra of Dynkin type A. Furthermore, our approach gives a geometric characterization of all d-cluster tilting subcategories of D-b(Lambda) that are closed under [d].
引用
收藏
页码:1255 / 1275
页数:21
相关论文
共 57 条
[1]   STABLE CATEGORIES OF COHEN-MACAULAY MODULES AND CLUSTER CATEGORIES [J].
Amiot, Claire ;
Iyama, Osamu ;
Reiten, Idun .
AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (03) :813-857
[2]   Morphisms between indecomposable complexes in the bounded derived category of a gentle algebra [J].
Arnesen, Kristin Krogh ;
Laking, Rosanna ;
Pauksztello, David .
JOURNAL OF ALGEBRA, 2016, 467 :1-46
[3]   GENERALIZED TILTED ALGEBRAS OF TYPE AN [J].
ASSEM, I ;
HAPPEL, D .
COMMUNICATIONS IN ALGEBRA, 1981, 9 (20) :2101-2125
[4]   ITERATED TILTED ALGEBRAS OF TYPE AN [J].
ASSEM, I ;
SKOWRONSKI, A .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (02) :269-290
[5]   A Geometric Model for the Module Category of a Gentle Algebra [J].
Baur, Karin ;
Simoes, Raquel Coelho .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (15) :11357-11392
[6]   Indecomposables in derived categories of gentle algebras [J].
Bekkert, V ;
Merklen, HA .
ALGEBRAS AND REPRESENTATION THEORY, 2003, 6 (03) :285-302
[7]   On the Combinatorics of Gentle Algebras [J].
Brustle, Thomas ;
Douville, Guillaume ;
Mousavand, Kaveh ;
Thomas, Hugh ;
Yildirim, Emine .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2020, 72 (06) :1551-1580
[8]   AUSLANDER-REITEN SEQUENCES WITH FEW MIDDLE TERMS AND APPLICATIONS TO STRING ALGEBRAS [J].
BUTLER, MCR ;
RINGEL, CM .
COMMUNICATIONS IN ALGEBRA, 1987, 15 (1-2) :145-179
[9]   On Extensions for Gentle Algebras [J].
Canakci, Ilke ;
Pauksztello, David ;
Schroll, Sibylle .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (01) :249-292
[10]  
Darp? E., 2021, PREPRINT