Downgrading BIRADS 3 to BIRADS 2 category using a computer-aided microcalcification analysis and risk assessment system for early breast cancer

被引:6
作者
Giannakopoulou, Georgia [1 ,2 ]
Spyrou, George M. [3 ,4 ]
Antaraki, Argyro [3 ]
Andreadis, Ioannis [3 ,6 ]
Koulocheri, Dimitra [1 ,2 ]
Zagouri, Flora [1 ]
Nonni, Afroditi [5 ]
Filippakis, George M. [1 ]
Nikita, Konstantina S. [6 ]
Ligomenides, Panos A. [3 ]
Zografos, George C. [1 ]
机构
[1] Univ Athens, Sch Med, Hippokratio Hosp, Breast Unit,Dept Propaedeut Surg 1, GR-11527 Athens, Greece
[2] Hippokrateion Hosp, Dept Radiol, Athens 11527, Greece
[3] Acad Athens, Informat Lab, Athens 11527, Greece
[4] Acad Athens, Biomed Informat Unit, Biomed Res Fdn, Athens 11527, Greece
[5] Univ Athens, Sch Med, Dept Pathol, GR-11527 Athens, Greece
[6] Natl Tech Univ Athens, Dept Elect & Comp Engn, Athens 15780, Greece
关键词
Early breast cancer; Microcalcifications; BIRADS; 3; CAD system; SVABB; MAMMOGRAPHIC MICROCALCIFICATIONS; CLUSTERED MICROCALCIFICATIONS; SCREENING MAMMOGRAPHY; DIAGNOSIS SCHEME; APPROPRIATE ROLE; BENIGN; BIOPSY; CLASSIFICATION; CARCINOMA; SEGMENTATION;
D O I
10.1016/j.compbiomed.2010.09.005
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper explores the potential of a computer-aided diagnosis system to discriminate the real benign microcalcifications among a specific subset of 109 patients with BIRADS 3 mammograms who had undergone biopsy, thus making it possible to downgrade them to BIRADS 2 category. The system detected and quantified critical features of microcalcifications and classified them on a risk percentage scale for malignancy. The system successfully detected all cancers. Nevertheless, it suggested biopsy for 11/15 atypical lesions. Finally, the system characterized as definitely benign (BIRADS 2) 29/88 benign lesions, previously assigned to BIRADS 3. and thus achieved a reduction of 33% in unnecessary biopsies. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:853 / 859
页数:7
相关论文
共 48 条
[1]  
ADLER DD, 1992, CURR OPIN RADIOL, V4, P123
[2]  
American College of Radiology (ACR), 2003, ILL BREAST IM REP DA
[3]  
American College of Surgeons and American College of Radiology, 1998, B AM COLL SURG, V83, P30
[4]   Computer-aided detection in mammography [J].
Astley, SM ;
Gilbert, FJ .
CLINICAL RADIOLOGY, 2004, 59 (05) :390-399
[5]   When should caution be used with regards to histopathologic findings of imaging-guided breast micro- and macro-biopsies? [J].
Balu-Maestro, C ;
Ettore, F ;
Chapellier, C ;
Peyrottes, I ;
Leblanc-Talent, P .
JOURNAL DE RADIOLOGIE, 2006, 87 (03) :265-273
[6]   Segmentation and numerical analysis of microcalcifications on mammograms using mathematical morphology [J].
Betal, D ;
Roberts, N ;
Whitehouse, GH .
BRITISH JOURNAL OF RADIOLOGY, 1997, 70 (837) :903-917
[7]   Lobular neoplasia at percutaneous breast biopsy: Variables associated with carcinoma at surgical excision [J].
Brem, Rachel F. ;
Lechner, Mary C. ;
Jackman, Roger J. ;
Rapelyea, Jocelyn A. ;
Evans, W. Phil ;
Philpotts, Liane E. ;
Hargreaves, Jonathan ;
Wasden, Shane .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2008, 190 (03) :637-641
[8]   Improvement in sensitivity of screening mammography with computer-aided detection: A multiinstitutional trial [J].
Brem, RF ;
Baum, J ;
Lechner, M ;
Kaplan, S ;
Souders, S ;
Naul, LG ;
Hoffmeister, J .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2003, 181 (03) :687-693
[9]   Computer-aided classification of BI-RADS category 3 breast lesions [J].
Buchbinder, SS ;
Leichter, IS ;
Lederman, RB ;
Novak, B ;
Bamberger, PN ;
Sklair-Levy, M ;
Yarmish, G ;
Fields, SI .
RADIOLOGY, 2004, 230 (03) :820-823
[10]   Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: Initial experience [J].
Burnside, Elizabeth S. ;
Rubin, Daniel L. ;
Fine, Jason P. ;
Shachter, Ross D. ;
Sisney, Gale A. ;
Leung, Winifred K. .
RADIOLOGY, 2006, 240 (03) :666-673