The enzyme isopentenyl pyrophosphate (IPP) isomerase catalyzes the reversible isomerization of IPP to produce dimethylallyl pyrophosphate, the initial substrate leading to the biosynthesis of carotenoids and many other long-chain isoprenoids. Expression of IPP isomerase, and of two enzymes specific to the carotenoid pathway (lycopene beta-cyclase and beta-carotene-C-4-oxygenase), was followed in the green unicellular alga Haematococcus pluvialis after exposure to high illumination, This alga uniquely accumulates carotenoids in the cytoplasm and in late developmental stages turns deep-red in color because of accumulation of ketocarotenoids in the cytosol, The carotenoid/chlorophyll ratio increased 3-fold in wild type and 6-fold in a precocious carotenoid-accumulating mutant (Car-3) within 24 h after increasing the illumination from 20 to 150 mu mol photon m(-2).s(-1). Two cDNAs encoding PPP isomerase in Haematococcus, ipiHp1 and ipiHp2, were identified. Although otherwise highly similar (95% identity overall), the predicted sequence of ipiHp1 contained a 12-aa region not found in that of ipiHp2, This was reflected by a size difference between two polypeptides of 34 and 32.5 kDa, both of which reacted with an antibody to the product of ipiHp1. We suggest that the 32.5-kDa form is involved with the carotenoid accumulation in the cytoplasm, since the 32.5-kDa polypeptide was preferentially up-regulated by high light preceding the carotenoid increase and only this form was detected in red cysts.