Semicanonical bases and preprojective algebras

被引:68
作者
Geiss, C
Leclerc, B
Schröer, J
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Caen, Lab LMNO, F-14032 Caen, France
[3] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2005年 / 38卷 / 02期
关键词
D O I
10.1016/j.ansens.2004.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the multiplicative properties of the dual of Lusztig's semicanonical basis. The elements of this basis are naturally indexed by the irreducible components of Lusztig's nilpotent varieties, which can be interpreted as varieties of modules over preprojective algebras. We prove that the product of two dual semicanonical basis vectors rho(Z') and rho(Z") is again a dual semicanonical basis vector provided the closure of the direct sum of the corresponding two irreducible components Z' and Z" is again an irreducible component. It follows that the semicanonical basis and the canonical basis coincide if and only if we are in Dynkin type A(n) with n <= 4. Finally, we provide a detailed study of the varieties of modules over the preprojective algebra of type A(5). We show that in this case the multiplicative properties of the dual semicanonical basis are controlled by the Ringel form of a certain tubular algebra of type (6, 3, 2) and by the corresponding elliptic root system of type E-8((1,1)). 2005 Elsevier SAS.
引用
收藏
页码:193 / 253
页数:61
相关论文
共 51 条
[1]  
Auslander M., 1997, REPRESENTATION THEOR, V36
[2]   ON ALGEBRAS OF STRONGLY UNBOUNDED REPRESENTATION TYPE [J].
BAUTISTA, R .
COMMENTARII MATHEMATICI HELVETICI, 1985, 60 (03) :392-399
[3]   Cluster algebras III: Upper bounds and double Bruhat cells [J].
Berenstein, A ;
Fomin, S ;
Zelevinsky, A .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) :1-52
[4]  
Berenstein A., 1993, ADV SOVIET MATH, P51
[5]  
BONGARTZ K, 1983, J LOND MATH SOC, V28, P461
[6]   A GEOMETRIC VERSION OF THE MORITA EQUIVALENCE [J].
BONGARTZ, K .
JOURNAL OF ALGEBRA, 1991, 139 (01) :159-171
[7]   A multiplicative property of quantum flag minors II [J].
Caldero, P ;
Marsh, BR .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 :608-622
[8]   Adapted algebras for the Berenstein-Zelevinsky conjecture [J].
Caldero, P .
TRANSFORMATION GROUPS, 2003, 8 (01) :37-50
[9]  
CALDERO P, 2003, REPRESENTATION THEOR, V7, P164
[10]   Polytopal realizations of generalized associahedra [J].
Chapoton, F ;
Fomin, S ;
Zelevinsky, A .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (04) :537-566